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axion like particles - ALPs

ℒeff =
a

4Λ
FμνF̃μν

ma ∈ [MeV, GeV] Λ ≫ ma
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originally - the Axion, part of a solution to the strong CP problem (PC)


pseudo-Goladstone mode


portal to dark matter and/or dark sector


if very light, it is a dark matter candidate


predicted by string theory

well motivated BSM scenario

focus the effective ALP photon interaction 
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tion angle bin) was obtained from the data by applying
the selection criteria described above and fitting the ex-
perimental distributions of “elasticity” and Mγγ for each
angular bin. The typical background in the event selec-
tion process was only a few percent of the real signal
events (see Fig. 2). However, the uncertainty of 1.6% in
the background extraction in this much upgraded exper-
iment still remained one of the largest contributions to
the total systematic uncertainty.
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FIG. 2: Typical distribution of reconstructed “elasticity” (left
panel) and Mγγ (right panel) for one angular bin.

The extraction of differential cross sections from the
experimental yields requires an accurate knowledge of the
total photon flux for each tagger energy bin, the number
of atoms in the target, the acceptance of the experimental
setup and the inefficiencies of the detectors. The uncer-
tainty reached in the photon flux measurement, as de-
scribed above, was at the level of 1% [17]. Different tech-
niques have been used to determine the number of atoms
in both targets with an uncertainty less than 0.1% [15].
The acceptance and detection efficiencies and their un-
certainties were calculated by a GEANT-based Monte
Carlo code that included accurate information about the
detector geometry and response of each detector element.
Other than accidental backgrounds, some physics pro-
cesses with an energetic π0 in the final state can poten-
tially contribute to the extracted yield. The ω photopro-
duction process through the ω → π0γ decay channel is
the dominant contribution to the background. The fit
of the experimental data, as described below, with the
subtracted physics background changes the extracted π0

decay width by 1.4% with an uncertainty of 0.25%.
The resulting experimental cross sections for 12C and

208Pb are shown in Figs. 3 and 4 along with the fit results
for individual contributions from the different π0 pro-
duction mechanisms. Two elementary amplitudes, the
Primakoff (one photon exchange), TPr, and the strong
(hadron exchange), TS , contribute coherently, as well as
incoherently in π0 photoproduction from nuclei at for-

ward angles. The cross section of this process can be ex-
pressed by four terms: Primakoff (Pr), nuclear coherent
(NC), interference between strong and Primakoff ampli-
tudes (Int), and nuclear incoherent (NI):

dσ

dΩ
= | TPr + eiϕTS |2 +

dσ
NI

dΩ

=
dσ

Pr

dΩ
+

dσ
NC

dΩ
+

dσ
Int

dΩ
+

dσ
NI

dΩ
,

where ϕ is the relative phase between the Primakoff and
the strong amplitudes. The Primakoff cross section is
proportional to the π0 decay width, the primary focus of
this experiment [9]:

dσ
Pr

dΩ
= Γ(π0 → γγ)

8αZ2

m3

β3E4

Q4
|FEM (Q)|2 sin2 θπ,

where Z is the atomic number; m, β, θπ are the mass,
velocity and production angle of the pion; E is the energy
of the incident photon; Q is the four-momentum transfer
to the nucleus; FEM (Q) is the nuclear electromagnetic
form factor, corrected for final state interactions (FSI)
of the outgoing pion. The FSI effects for the photopro-
duced pions, as well as the photon shadowing effect in nu-
clear matter, need to be accurately included in the cross
sections before extracting the Primakoff amplitude. To
achieve this, and to calculate the NC and NI cross sec-
tions, a full theoretical description based on the Glauber
method was developed, providing an accurate calculation
of these processes in both light and heavy nuclei [18, 19].
For the NI process, an independent method based on
the multi-collision intranuclear cascade model [20] was
also used to check the model dependence of the extracted
decay width. The uncertainty in the decay width from
model dependence and the parameters inside of the mod-
els was estimated to be 0.3%.
The Γ(π0 → γγ) decay width was extracted by fitting

the experimental results with the theoretical cross sec-
tions of the four processes mentioned above folded with
the angular resolutions (σθ

π0
= 0.6 mrad) and the mea-

sured energy spectrum of the incident photons. In the fit-
ting process, four parameters, Γ(π0 → γγ), CNC , CNI , ϕ,
were varied to calculate the magnitude of the Primakoff,
NC, NI cross sections and the phase angle, respec-
tively. Independent analyses of the experimental data
by two groups within the PrimEx collaboration yielded
the weighted averages of the extracted decay widths for
12C and 208Pb presented in Table I.
The extracted decay width combined for the two tar-

gets is Γ(π0 → γγ) = 7.82±0.14 (stat.)±0.17 (syst.) eV.
The quoted total systematic uncertainty (2.1%) is the
quadratic sum of all the estimated uncertainties in this
experiment. The systematic uncertainties were verified
by measuring the cross sections of the Compton scatter-
ing and the e+e− production processes. The extracted
cross sections for these well-known processes agree with
the theoretical predictions at the level of 1.5% and will

PrimEx - 1009.1681
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perimental distributions of “elasticity” and Mγγ for each
angular bin. The typical background in the event selec-
tion process was only a few percent of the real signal
events (see Fig. 2). However, the uncertainty of 1.6% in
the background extraction in this much upgraded exper-
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FIG. 2: Typical distribution of reconstructed “elasticity” (left
panel) and Mγγ (right panel) for one angular bin.

The extraction of differential cross sections from the
experimental yields requires an accurate knowledge of the
total photon flux for each tagger energy bin, the number
of atoms in the target, the acceptance of the experimental
setup and the inefficiencies of the detectors. The uncer-
tainty reached in the photon flux measurement, as de-
scribed above, was at the level of 1% [17]. Different tech-
niques have been used to determine the number of atoms
in both targets with an uncertainty less than 0.1% [15].
The acceptance and detection efficiencies and their un-
certainties were calculated by a GEANT-based Monte
Carlo code that included accurate information about the
detector geometry and response of each detector element.
Other than accidental backgrounds, some physics pro-
cesses with an energetic π0 in the final state can poten-
tially contribute to the extracted yield. The ω photopro-
duction process through the ω → π0γ decay channel is
the dominant contribution to the background. The fit
of the experimental data, as described below, with the
subtracted physics background changes the extracted π0

decay width by 1.4% with an uncertainty of 0.25%.
The resulting experimental cross sections for 12C and

208Pb are shown in Figs. 3 and 4 along with the fit results
for individual contributions from the different π0 pro-
duction mechanisms. Two elementary amplitudes, the
Primakoff (one photon exchange), TPr, and the strong
(hadron exchange), TS , contribute coherently, as well as
incoherently in π0 photoproduction from nuclei at for-

ward angles. The cross section of this process can be ex-
pressed by four terms: Primakoff (Pr), nuclear coherent
(NC), interference between strong and Primakoff ampli-
tudes (Int), and nuclear incoherent (NI):
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where ϕ is the relative phase between the Primakoff and
the strong amplitudes. The Primakoff cross section is
proportional to the π0 decay width, the primary focus of
this experiment [9]:
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where Z is the atomic number; m, β, θπ are the mass,
velocity and production angle of the pion; E is the energy
of the incident photon; Q is the four-momentum transfer
to the nucleus; FEM (Q) is the nuclear electromagnetic
form factor, corrected for final state interactions (FSI)
of the outgoing pion. The FSI effects for the photopro-
duced pions, as well as the photon shadowing effect in nu-
clear matter, need to be accurately included in the cross
sections before extracting the Primakoff amplitude. To
achieve this, and to calculate the NC and NI cross sec-
tions, a full theoretical description based on the Glauber
method was developed, providing an accurate calculation
of these processes in both light and heavy nuclei [18, 19].
For the NI process, an independent method based on
the multi-collision intranuclear cascade model [20] was
also used to check the model dependence of the extracted
decay width. The uncertainty in the decay width from
model dependence and the parameters inside of the mod-
els was estimated to be 0.3%.
The Γ(π0 → γγ) decay width was extracted by fitting

the experimental results with the theoretical cross sec-
tions of the four processes mentioned above folded with
the angular resolutions (σθ

π0
= 0.6 mrad) and the mea-

sured energy spectrum of the incident photons. In the fit-
ting process, four parameters, Γ(π0 → γγ), CNC , CNI , ϕ,
were varied to calculate the magnitude of the Primakoff,
NC, NI cross sections and the phase angle, respec-
tively. Independent analyses of the experimental data
by two groups within the PrimEx collaboration yielded
the weighted averages of the extracted decay widths for
12C and 208Pb presented in Table I.
The extracted decay width combined for the two tar-

gets is Γ(π0 → γγ) = 7.82±0.14 (stat.)±0.17 (syst.) eV.
The quoted total systematic uncertainty (2.1%) is the
quadratic sum of all the estimated uncertainties in this
experiment. The systematic uncertainties were verified
by measuring the cross sections of the Compton scatter-
ing and the e+e− production processes. The extracted
cross sections for these well-known processes agree with
the theoretical predictions at the level of 1.5% and will
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backgrounds (based on GEANT 4 simulation):

1. charged particles - bended by a magnetic field (1.5T of 1m)


2. fake photons -  


                          


3. real photons -      dominant

N2n→2γ ≈ 5 × 108f 2
n→γe−10fn→γRsel

Nnγ→2γ ≈ 1 × 106fn→γe−10fn→γRsel

N2γ ≈ 8 × 102Rsel

 - event selection rejection

 - neutron fake rate

Rsel
fn→γ

depend on detector technology

 (energy, pointing and timing resolutions)
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assuming background free
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primary ALP production
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∝ g2
ae

∝ 1/Λ2
a,ϕ

∝ q4
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Probing ALPs 

at the CERN Gamma Factory

Balkin, Krasny, Ma, Safdi, YS

2105.15072



the Gamma-Factory
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partially stripped ion beam 

(stored at the LHC ring)

laser pulse

the outgoing photon flux:


,   Eγ ∼ 𝒪(1 − 400) MeV
dNγ

dt
≈ (1016 − 1018) sec−1

factor of  larger than present sources𝒪(107)
 Krasny et al. 1511.07794

use this huge photon flux for BSM
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(A): EγGF
= 1.6 GeV

dNγ

dt
= 1016 sec−1

(B): EγGF
= 0.2 GeV

dNγ

dt
= 1017 sec−1

(A): EγGF
= 0.02 GeV

dNγ

dt
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Outlook
primEx/GlueX - prompt search


LUXE-NPOD: open the door to novel 
type of beam dump experiments, 
connect BSM and high intense QED 
LUXE is proposed experiment at DESY 
and Eu.XFEL (pass CD0 stage)


the CERN Gamma-Factory 
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what if ALP can decay hadronically?

 (  ) ma > 3mπ
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LUXE-NPOD backgrounds
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