

Recent results of charm physics at BESIII

Huijing Li^{1*}

- 1. Henan Normal University
- * lihuijing@htu.edu.cn

(On behalf of BESIII Collaboration)

Aug. 25 th, 2021

The 20 th Lomonosov Conference on Elementary Particle Physics

Moscow State University Aug. 19-25 th, 2021

Outline

	In	troduction					
\swarrow	(Se	(Semi-) leptonic decays					
		$D_s^+ o au^+ u_ au$					
		• $ au^+ ightarrow e^+ u_e \overline{ u}_ au$	arXiv: 2106.02218 [hep-ex]				
		• $ au^+ o \pi^+ \pi^0 \overline{ u}_ au$	arXiv: 2105.07178 [hep-ex], accepted by PRD				
		• $\tau^+ \to \pi^+ \overline{\nu}_{\tau}$ $D_s^+ \to \mu^+ \nu_{\mu}$	arXiv: 2102.11734 [hep-ex], accepted by PRD				
		$D_{(s)} \to Pl^+ \nu_l \ (P = \eta, X, K_1(1270)^-)$	PRL124(2020)231801				
	H	adronic decays	PRD104(2021)012003 arXiv: 2102.10850 [hep-ex]				
		$D o K^0_{S,L} \pi^+ \pi^-$	PRL124(2020)241802; PRD101(2020)112002				
		$D \rightarrow K^0_{S,L} K^+ K^-$	PRD102(2020)052008				
		$D \rightarrow K^+ \pi^+ \pi^+ \pi^-$ and $D \rightarrow K^- \pi^+ \pi^0$	JHEP05(2021)164				
		$D^+ o K^+ \pi^+ \pi^- \pi^0$	PRL125(2020)141802				

Main goals

In the SM:

- ***** Decay constant $f_{D_{(s)}^+}$, form factor $f_+(0)$: calibrate Lattice QCD
- **CKM matrix element** $|V_{cd(s)}|$: test the unitarity of the CKM matrix
- Lepton flavor universality (LFU) test.

Hadronic decays of charm mesons

- Strong phase measurement with quantum correlated $\psi(3770) \rightarrow D^0 \overline{D}^0$ is crucial in the model-independent determinations of γ/ϕ_3 and charm mixing/direct CPV.
 - In the SM, CP violation is studied by measuring CKM matrix, represented by unitarity triangle in complex plane. The angle is the only one that can be extracted from tree-level processes, for which the contribution of non-SM effect is small.
- Probe non-perturbative QCD
 - Help to understand hadron spectra
 - Study SU(3) flavor symmetry

Beijing Electron Positron Collider (BEPCII) in China

A double-ring collider with high luminosity

Center-of-mass energy: 2.0 – 4.95 GeV

2004: started BEPCII upgrade, BESIII construction
2008: test run
2009-now: BESIII physics run

Linac

- 1989-2004(BEPC): $L_{\text{peak}} = 1.0 \times 10^{31} / \text{cm}^2 \text{s}$
 - 2009-now(BEPCII) $L_{\text{peak}} = 1.0 \times 10^{33} / \text{cm}^2 \text{s}$ (Achieved on Apr. 5th, 2016)

BESIII Detector

[1] M. Ablikim et al. (BESIII Collaboration), Nucl. Instr. Meth. A614, 345 (2010).

$D^{0(+)}$ and D_s^+ data set at BESIII

$\sqrt{s}(\text{GeV})$	Integrated luminosity	Decay chain of interest	
3 773	2 93 fb ⁻¹	$e^+e^- ightarrow \psi(3770) ightarrow D^0\overline{D}{}^0$	
5.775	2. 75 10	$e^+e^- ightarrow \psi(3770) ightarrow D^+D^-$	
$\sqrt{s}(\text{GeV})$	Integrated luminosity(pb ⁻¹)		
4.178	$3189.0 \pm 0.9 \pm 31.9$		
4.189	526.7 \pm 0.1 \pm 2.2	$e^+e^- \rightarrow D_s^{*\pm}D_s^{\mp}$	
4.199	526.0 \pm 0.1 \pm 2.1	Total: 6.32 fb ⁻¹	
4.209	517.1 \pm 0.1 \pm 1.8		
4.219	$514.6 \pm 0.1 \pm 1.8$		
4.226	$1047.3 \pm 0.1 \pm 10.2$		

Analysis technique

Similar for the hadronic decays Charge conjugated processes are implied

The signal branching fraction: $B_{sig} = \frac{N_{DT}^{signal}}{N_{D(s)}^{ST} \times \epsilon_{sig}}$

• Single tag (ST): fully reconstruct one D^{-1} $\Delta E = E_{D^{-}} - E_{\text{beam}}$ $M_{\text{BC}} = \sqrt{E_{\text{beam}}^2 - |\vec{p}_{D^{-}}|^2}$ PRL124(2020)231801 $\int_{0}^{10} \rightarrow K^* \pi^* \pi^*$ $\int_{0}^{10} M_{\text{BC}} = \frac{1}{2} \int_{0}^{10} \frac{D^* \rightarrow K^* \pi^* \pi^*}{1.86}$ $M_{\text{BC}} = \frac{1}{2} \int_{0}^{10} \frac{1}{1.88}$ $M_{\text{BC}}^{\text{tag}}(\text{GeV}/c^2)$ Double tag (DT): in the recoil ST $D_{(s)}^{-}$, analyze the signal $D_{(s)}^{+}$ $MM^{2} = E_{miss}^{2} - |\vec{p}_{miss}|^{2}$ $E_{miss} = E_{cm} - \sqrt{\left|\vec{p}_{D_{(s)}^{-}}\right|^{2} + M_{D_{(s)}}^{2}} - E_{X}$

$$\vec{p}_{\text{miss}} = -\vec{p}_{D_{(s)}} - \vec{p}_X$$
$$U_{\text{miss}} = E_{\text{miss}} - |\vec{p}_{\text{miss}}|$$

• Single tag (ST): fully reconstruct one D_s^-

Pure leptonic D_s^+ decays

In the SM

$$\Gamma(D_{(s)}^{+} \to l^{+}\nu_{l}) = \frac{G_{F}^{2}f_{D_{(s)}^{+}}^{2}}{8\pi} |V_{cd(s)}|^{2} m_{l}^{2} m_{D_{(s)}^{+}} \left(1 - \frac{m_{l}^{2}}{m_{D_{(s)}^{+}}^{2}}\right)^{2}$$

arXiv: 2105.07178 [hep-ex], accepted by PRD

• Simultaneous fit to the MM² for six energy points shared with a common leptonic branching fraction.

$D_s^+ \to \tau^+ \nu_\tau$ via $\tau^+ \to \pi^+ \overline{\nu}_\tau$ and $D_s^+ \to \mu^+ \nu_\mu$

arXiv: 2102.11734 [hep-ex], accepted by PRD

• An unbinned simultaneous maximum likelihood fit to two-dimensional distributions

 $B(D_s^+ \to \tau^+ \nu_{\tau}) = (5.21 \pm 0.25_{\text{stat.}} \pm 0.17_{\text{syst.}}) \times 10^{-2}$

 $B(D_s^+ \rightarrow \mu^+ \nu_{\mu}) = (5.35 \pm 0.13_{\text{stat.}} \pm 0.16_{\text{syst.}}) \times 10^{-3}$ The most precise to date.

Lepton flavor universality

• Combine results from **BESIII measurements** and PDG2020

No LFU violation in $\tau - \mu$ flavors with the current precision.

Comparison of decay constant $f_{D_s^+}$ $B(D_s^+ \to l^+ \nu_l) \propto [f_{D_s^+} |V_{cs}|]^2$

• Input $|V_{cs}| = 0.97320 \pm 0.00011$ from CKM global fit

ETM(2+1+1) FMILC(2+1+1) FLAG19(2+1+1)	PRD91(2015)054507 PRD98(2018)074512 arXiv:1902.08191 [hep-lat]	247.2±4.1 249.9±0.4 249.9±0.5	I I I I I⊷I ∳	
HFLAV18 CLEO CLEO CLEO BaBar Belle BESIII 0.482 fb ⁻¹ CLEO BaBar Belle BESIII 3.19 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹	EPJC81(2021)226 PRD79(2009)052002, $\tau_e v$ PRD80(2009)112004, $\tau_\rho v$ PRD79(2009)052001, $\tau_\pi v$ PRD82(2010)091103, $\tau_{e,\mu} v$ JHEP09(2013)139, $\tau_{e,\mu,\pi} v$ PRD94(2016)072004, μv PRD79(2009)052001, μv PRD82(2010)091103, μv JHEP09(2013)139, μv JHEP09(2013)139, μv arXiv:2102.11734 [hep-ex], μv arXiv:2102.11734 [hep-ex], $\tau_\pi v$ arXiv:2105.07178 [hep-ex], $\tau_\rho v$	254.5 ± 3.2 $251.8\pm11.2\pm5.3$ $257.0\pm13.3\pm5.0$ $277.1\pm17.5\pm4.0$ $244.6\pm8.6\pm12.0$ $261.1\pm4.8\pm7.2$ $245.5\pm17.8\pm5.1$ $256.7\pm10.2\pm4.0$ $264.9\pm8.4\pm7.6$ $248.8\pm6.6\pm4.8$ $253.0\pm3.7\pm3.6$ $249.8\pm3.0\pm3.8$ $249.7\pm6.0\pm4.2$ $251.6\pm5.9\pm4.9$		
0	100 f _{Ds} ⁺ [MeV]	200)0

Comparison of $|V_{cs}|$

• Input $f_{D_s^+} = 249.9 \pm 0.5$ from LQCD calculations

CKMFitter	PTEP2020(2020)083C01	0.97320±0.00011
HFLAV18	EPJC81(2021)226	0.969±0.010
CLEO	PRD79(2009)052002, $\tau_e v$	0.981±0.044±0.021 ⊷
CLEO	PRD80(2009)112004, $\tau_{\rho}v$	1.001±0.052±0.019 ⊷-
CLEO	PRD79(2009)052001, $\tau_{\pi}v$	1.079±0.068±0.016 ⊷
BaBar	PRD82(2010)091103, $\tau_{e,\mu} v$	0.953±0.033±0.047
Belle	JHEP09(2013)139, $\tau_{e,\mu,\pi} v$	1.017±0.019±0.028 ^{нен}
BESIII 0.482 fb ⁻¹	PRD94(2016)072004, μν	0.956±0.069±0.020 ⊨⊶
CLEO	PRD79(2009)052001, μν	1.000±0.040±0.016 ⊨⊶
BaBar	PRD82(2010)091103, μν	1.032±0.033±0.029
Belle	JHEP09(2013)139, μν	0.969±0.026±0.019 ⊷
BESIII 3.19 fb ⁻¹	PRL122(2019)071802, μν	0.985±0.014±0.014
BESIII 6.32 fb ⁻¹	arXiv:2102.11734 [hep-ex] , μν	0.973±0.012±0.015
BESIII 6.32 fb ⁻¹	arXiv:2102.11734 [hep-ex], $\tau_{\pi}v$	0.972±0.023±0.016 ➡
BESIII 6.32 fb ⁻¹	arXiv:2105.07178 [hep-ex], $\tau_\rho \nu$	0.980±0.023±0.019
BESIII 6.32 fb ⁻¹	arXiv:2106.02218 [hep-ex], $\tau_e \nu$	0.978±0.009±0.012 ►
	-1 0	1

IV_{cs}I

Semi-leptonic $D_{(s)}$ decay

In the SM

 $\frac{d\Gamma}{dq^2} = X \frac{G_F^2 p^3}{24\pi^3} \left| f_+(q^2) \right|^2 \left| V_{cd(s)} \right|^2, (X = 1 \text{ for } K^-, \pi^-, \overline{K}^0, \eta^{(\prime)}; X = \frac{1}{2} \text{ for } \pi^0)$

$$D^+ \to \eta \mu^+ \nu_\mu$$

PRL124(2020)231801

No. of single tags:
$$N_{ST}^{\text{signal}} = (1522.5 \pm 2.1) \times 10^3$$

$$\sqrt[s]{\eta \rightarrow \gamma \gamma}$$

$$\sqrt[s]{ Unbinned fit to U_{miss}}$$

$$N_{DT}^{signal} = 234 \pm 22$$

$$B_{D^+ \rightarrow \eta \mu^+ \nu_{\mu}} = (10.4 \pm 1.0_{stat.} \pm 0.5_{syst.}) \times 10^{-4}$$

$$R_{\mu/e} = \frac{B_{D^+ \rightarrow \eta \mu^+ \nu_{\mu}}}{B_{D^+ \rightarrow \eta e^+ \nu_e}^{PDG}} = 0.91 \pm 0.13$$
SM prediction: (0.97 - 1.00)
$$Sig. > 10\sigma$$

$$G_{0}$$

No LFU violation within current sensitivity.

..... Nonpeaking bkgs

PRL124(2020)231801

• First measurement on dynamics of $D^+ \rightarrow \eta \mu^+ \nu_{\mu}$ decay

$$D^0 \rightarrow K_1(1270)^- e^+ \nu_e$$

arXiv: 2102.10850 [hep-ex]

 $\checkmark K_1(1270)^- \rightarrow K^- \pi^+ \pi^-$

✓ Two-dimensional unbinned extended maximum-likelihood simultaneous fits shared with the same value of $[B_{D^0 \to K_1(1270)^- e^+ v_e} \cdot B_{K_1(1270)^- \to X \to K^- \pi^+ \pi^-}]$.

$$B_{D^0 \to K_1(1270)^- e^+ \nu_e} = (1.09 \pm 0.13^{+0.09}_{-0.13} \pm 0.12_{\text{ex.}}) \times 10^{-3}$$

 $\frac{\Gamma_{D^0 \to K_1(1270)^- e^+ \nu_e}}{\Gamma_{D^+ \to \bar{K}_1(1270)^0 e^+ \nu_e}} = 1.20 \pm 0.02_{\text{stat.}} \pm 0.14_{\text{syst.}} \pm 0.04_{\text{ex.}}$

Agrees with unity as predicted by isospin symmetry.

$$D_s^+ \to Xe^+ \nu_e$$

PRD104(2021)012003

- \checkmark X means inclusive decays
- ✓ Sort recoil-side selected tracks into eighteen momentum (p_e) bins for $p_e > 200 \text{ MeV}/c$

✓ The signal yield
$$N_{D_s^+ \to Xe^+\nu_e}^{\text{signal}} = N_{p_e > 200 \text{ MeV}/c} + N_{p_e ≤ 200 \text{ MeV}/c}$$
 (extrapolate)

$$N_{D_s^+ \to Xe^+\nu_e}^{\text{signal}} = 16648 \pm 326 \qquad B(D_s^+ \to Xe^+\nu_e) = (6.30 \pm 0.13_{\text{stat.}} \pm 0.10_{\text{syst.}}) \times 10^{-2}$$

$$\frac{\Gamma_{D_s^+ \to Xe^+ \nu_e}}{\Gamma_{D^0 \to Xe^+ \nu_e}} = 0.790 \pm 0.016_{\text{stat.}} \pm 0.020_{\text{syst.}}$$

- Consistent with the prediction of 0.813
- Supports the conclusion that the difference in the semileptonic decay widths of $D_s^+(c\overline{s})$ and $D^0(c\overline{u})$ mesons can be accounted for within the Standard model by non-spectator interactions.

Hadronic decays

The $\psi(3770)$ has a C = -1 quantum number and this is conserved in the strong decay in which two neutral D mesons are produced. Hence, the two neutral mesons have an antisymmetric wave function. This also means that the two D mesons do not decay independently of one another.

The $D^0\overline{D}^0$ pair will be a quantum-correlated state

$D \rightarrow K^0_{S,L} \pi^+ \pi^-$

PRL124(2020)241802; PRD101(2020)112002

- $\psi(3770) \rightarrow D^0 \overline{D}{}^0$ quantum correlation \rightarrow Directly measure the strong-phase difference $\Delta \delta_D$ between D^0 and $\overline{D}{}^0$ decays \rightarrow The key inputs for a binned model-independent determination of the CKM angle γ/ϕ_3 with *B* decays.
- c_i and s_i are the amplitude-weighted averages of $\cos \Delta \delta_D$ and $\sin \Delta \delta_D$ over each Dalitz plot bin.
- The estimated uncertainties on γ/ϕ_3 : between 0.7° and 1.2°.

0.5

ś O

-0.5

Equal $\Delta \delta_D$ binnings

0.5

-0.5

-1

0

0.5

ν O

-0.5

Optimal $\Delta \delta_D$ binnings

0.5

-0.5

-1

Modified optimal $\Delta \delta_D$ binnings

$D \rightarrow K^0_{S,L} K^+ K^-$

PRD102(2020)052008

$D \rightarrow K^+ \pi^+ \pi^+ \pi^-$ and $D \rightarrow K^- \pi^+ \pi^0$

JHEP05(2021)164

• A χ^2 fit : obtain the coherence factors (*R*) and the average strong-phase differences (δ_D)

- $\Delta \chi^2$ scans: $\Delta \chi^2 = 2.30, 6.18, 11.83$ intervals correspond to 68.3%, 95.4%, and 99.7% confidence levels in the 2D parameter space:
- Besides, the phase space of $D \to K^+ \pi^+ \pi^- \pi^-$ is divided into four bins. Based on this results, the estimated uncertainty on γ/ϕ_3 is around 6°.

$D^+ ightarrow K^+ \pi^+ \pi^- \pi^0$

PRL125(2020)141802

- The naive expectation for the doubly Cabibbo-suppressed (DCS) decay rate relative to its Cabibbo-favored (CF) counterpart R = B(DCS)/B(CF) is of the order $\tan^4\theta_C(\sim 0.29\%)$ level, where θ_C is the Cabibbo mixing angle.
- 2D fits for all events; simultaneous 2D fits for ω events

$$B_{D^+ \to K^+ \omega} = (5.7^{+2.5}_{-2.1 \text{ stat.}} \pm 0.2_{\text{syst.}}) \times 10^{-5}$$

$$B_{D^+ \to K^+ \pi^+ \pi^- \pi^0}^* = (1.13 \pm 0.08_{\text{stat.}} \pm 0.03_{\text{syst.}}) \times 10^{-3}$$

*Remove contributions from $\eta/\omega/\phi \rightarrow \pi^+\pi^-\pi^0$

• The ratio B(DCS)/B(CF):

$$\frac{B_{D^+ \to K^+ \pi^+ \pi^- \pi^0}^*}{\overline{B}_{D^+ \to K^- \pi^+ \pi^+ \pi^0}^*} = (1.81 \pm 0.15)\% = (6.28 \pm 0.52) \tan^4 \theta_C$$

This ratio is significantly larger than the values (0.21~0.58)% from other DCS decays, which implies that there is a massive isospin symmetry violation

• The asymmetry:

$$A_{CP}^{D^{\pm} \to K^{\pm} \pi^{\pm} \pi^{\mp} \pi^{0}} = \frac{B_{D^{+} \to K^{+} \pi^{+} \pi^{-} \pi^{0}} - B_{D^{-} \to K^{-} \pi^{-} \pi^{+} \pi^{0}}}{B_{D^{+} \to K^{+} \pi^{+} \pi^{-} \pi^{0}} + B_{D^{-} \to K^{-} \pi^{-} \pi^{+} \pi^{0}}} = (-0.04 \pm 0.06_{\text{stat.}} \pm 0.01_{\text{syst.}})$$

No evidence for CP violation is found.

With 2.93 fb⁻¹ @ 3.773 GeV and 6.32 fb⁻¹ from 4.178-4.226 GeV data samples, BESIII have studied

- pure and semi-leptonic $D_{(s)}$ decays, which provide precision calibration of LQCD and precision measurements of CKM matrix elements.
- charm hadronic decays, which are key labs to understand non-perturbative QCD, and provide important inputs to model-independent determination of CKM angle γ/ϕ_3 and charm mixing/CPV.

✓ In the near future, BESIII will collect 20 fb⁻¹ @ 3.773 GeV data sample, and another
 3 fb⁻¹ @ 4.178 GeV[1], the single precisions will be further improved → a new era of
 precision charm physics.

- Form factor $f_+(0)$ with input $|V_{cs}|^{\text{CKMfitter}}$
 - Single pole model ISGW2 model

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{1 - q^{2}/M_{\text{pole}}^{2}} \qquad f_{+}(q^{2}) = f_{+}(q_{\text{max}}^{2}) \left(1 + \frac{r^{2}}{12}(q_{\text{max}}^{2} - q^{2})\right)^{-2}$$

Modified pole model
$$f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - \frac{q^{2}}{M_{\text{pole}}^{2}}\right)\left(1 - \alpha \frac{q^{2}}{M_{\text{pole}}^{2}}\right)}$$

Series expansion

$$f_{+}(t) = \frac{1}{P(t)\Phi(t,t_{0})}a_{0}(t_{0})(1 + \sum_{k=1}^{\infty}r_{k}(t_{0})[z(t,t_{0})]^{k})$$