

Recent searches for Exotic Charmonium-like States at BESIII

Xiaoping Qin (On behalf of BESIII Collaboration) Fudan University

20th Lomonosov Conference on Elementary Particle Physics 19 - 25, Aug. 2021

qinxp@ihep.ac.cn

Outline

Introduction Search for X(3872) $\triangleright e^+e^- \rightarrow X(3872)\gamma$ $\geq e^+e^- \rightarrow \pi^0 X(3872) \gamma$ Search for Z states $\geq e^+e^- \rightarrow \chi_{cI}\pi^+\pi^ \succ e^+e^- \rightarrow \eta_c \pi^+\pi^-\pi^0$, $\eta_c \pi^+\pi^-$, and $\eta_c \pi^0 \gamma$ $\triangleright e^+e^- \rightarrow \eta_c \eta \pi^+\pi^ \geq e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$

Search for Y states

Charmonium + light hadrons: $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$ $e^+e^- \rightarrow \eta J/\psi$ $e^+e^- \rightarrow \eta \psi(2S)$ $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ Charmonium + γ : $e^+e^- \rightarrow \gamma \chi_{c0,c1,c2}$

Summary

Charmonium-like States

- ✓ Many Exotic Charmonium-like(XYZ) states have been discovered in the quarkonium spectrum.
- ✓ The XYZ states show properties inconsistent with expectations from established quark models

BESIII Data for XYZ study

- $\sqrt{s} > 3.8 \text{ GeV} : 22 \text{ f} b^{-1}$
- $3.8 < \sqrt{s} \le 4.6 \text{ GeV}$: 16 fb⁻¹
- $4.6 < \sqrt{s} \le 4.7 \text{ GeV: } 3.8 \text{ f} b^{-1}$

•
$$\sqrt{s} > 4.7 \text{ GeV: } 1.9 \text{ f} b^{-1}$$

R scan:

- 105 energy point
- $7 \sim 9 \text{ f} b^{-1}$ each energy
- $3.8 < \sqrt{s} < 4.6 \text{ GeV}$

Study of $X(3872) \rightarrow D^{*0} \overline{D}^0$ +c.c. and $\gamma D^+ D^$ in $e^+e^- \rightarrow \gamma X(3872)$

PRL 124, 242001 (2020)

• The study of $e^+e^- \rightarrow \gamma X(3872)$ by BESIII support hadronic molecule interpretation for the X(3872) resonance

 $\square D^{*0} \rightarrow \gamma D^0$ and $\pi^0 D^0$ $\square D^0 \to K^- \pi^+, K^- \pi^+ \pi^0$, and $K^- \pi^+ \pi^+ \pi^ \square D^+ \rightarrow K^- \pi^+ \pi^+ \text{ and } K^- \pi^+ \pi^+ \pi^0$

DBESIII observe $X(3872) \rightarrow D^{*0} \overline{D}^{0} + c.c.$ with statistical significances of 7.4 σ ■No evident signals for $X(3872) \rightarrow \gamma D^+ D^-$,

 $\gamma D^0 \overline{D}{}^0$, and $\pi^0 D^0 \overline{D}{}^0$ are found.

FIG. 2. $M(\gamma_L D^0 \overline{D^0})$ with $M(\gamma_L D^0)$ (a) in or (b) below the D^{*0} mass window. (c) $M(\pi^0 D^0 \overline{D^0})$ with $M(\pi^0 D^0)$ in the D^{*0} mass window. Simultaneous fit results for $X(3872) \rightarrow D^{*0}D^0$ with (d) $D^{*0} \rightarrow \gamma D^0$ and (e) $D^{*0} \rightarrow \pi^0 D^0$ mode. (f) Fit results for $X(3872) \rightarrow \gamma_L D^+ D^-$. The points with error bars are from data, the red curves are the best fit, and the blue dashed curves are the background components.

Study of $X(3872) \rightarrow \gamma J/\psi$ and $\gamma \psi(2S)$ in $e^+e^- \rightarrow \gamma X(3872)$

PRL 124, 242001 (2020)

 $4.178 \le \sqrt{s} \le 4.278 \text{ GeV} (9.0 \text{ f} b^{-1})$

 $\psi(2S) \to \pi^+ \pi^- J/\psi \text{ and } \mu^+ \mu^-$ $J/\psi \to e^+ e^- \text{ or } \mu^+ \mu^-$

- ✓ BESIII find evidence for $X(3872) \rightarrow \gamma J/\psi$ with statistical significances of 3.5σ
- ✓ No evident signal for $X(3872) \rightarrow \gamma \psi(2S)$ is found.

$$R_{\gamma\psi} = \frac{B[X(3872) \to \gamma\psi(2S)]}{B[X(3872) \to \gamma J/\psi]} = 0.59 \text{ at } 90\% \text{ C.L.}$$

 ✓ X(3872) state is more likely a molecule or a mixture of molecule and charmonium, rather than a pure charmonium state

TABLE I. Relative branching ratios and UL on branching ratios compared with $X(3872) \rightarrow \pi^+\pi^- J/\psi$ [18,27], where systematic uncertainties have been taken into account.

Mode	Ratio	UL
$\gamma J/\psi$	0.79 ± 0.28	
$\gamma \psi'$	-0.03 ± 0.22	< 0.42
$\gamma D^0 \overline{D^0}$	0.54 ± 0.48	< 1.58
$\pi^0 D^0 \bar{D^0}$	-0.13 ± 0.47	< 1.16
$D^{*0}ar{D^0}+ ext{c.c.}$	11.77 ± 3.09	
$\gamma D^+ D^-$	$0.00^{+0.48}_{-0.00}$	< 0.99
$\omega J/\psi$	$1.6^{+0.4}_{-0.3} \pm 0.2$ [18]	
$\pi^0 \chi_{c1}$	$0.88^{+0.33}_{-0.27} \pm 0.10$ [27]	
		6

Study of $e^+e^- \rightarrow \pi^0 X(3872)\gamma$ and search for $Z_c(4020)^0 \rightarrow X(3872)\gamma$

PRD 104. 012001 (2021)

$4.178 \le \sqrt{s} \le 4.600 \text{ GeV} (14.5 \text{ f} b^{-1})$

 Establishing connections among XYZ states may be a clue that can facilitate a better theoretical interpretation of these.

- $\blacksquare X(3872) \rightarrow \pi^+\pi^- I/\psi \ \blacksquare I/\psi \rightarrow e^+e^- \text{ or } \mu^+\mu^-$
- Upper limits on the number of signal events at the 90% C.L. are calculated by using Rolke method.

 \checkmark The results are not in conflict with the theoretical expectation 0.1 fb [PRD 102, 114041 (2020)]

7

Study of $e^+e^- \rightarrow \pi^0 X(3872)\gamma$ and search for $Z_c(4020)^0 \rightarrow X(3872)\gamma$

PRD 104, 012001 (2021)

Events / 1 MeV/c²

✓ The ratio does not contradict the prediction based on the molecular picture [PRD 99, 054028 (2019)].

Study of $\,e^+e^- o \pi^0\pi^0 J/\psi$

PRD 102, 012009 (2020)

 $3.81 \le \sqrt{s} \le 4.60 \text{ GeV} (12.4 \text{ f} b^{-1})$

$$\pi^0 o \gamma\gamma$$
, $J/\psi o e^+e^-$ or $\mu^+\mu^-$

✓ The mass and width of the Y(4220) are measured to be

$$M(Y(4220)) = 4220.4 \pm 2.4 \pm 2.3 \text{ MeV}/c^2$$
$$\Gamma(Y(4220)) = 46.2 \pm 4.7 \pm 2.1 \text{ MeV}$$

- ✓ The results agree with those reported in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ and confirm the existence of the charmoniumlike state Y(4220)
- ✓ The statistical significance of Y(4320) is estimated to be 4.2 σ

$$\frac{\sigma(\boldsymbol{\pi}^{0}\boldsymbol{\pi}^{0}\boldsymbol{J}/\boldsymbol{\psi})}{\sigma(\boldsymbol{\pi}^{+}\boldsymbol{\pi}^{-}\boldsymbol{J}/\boldsymbol{\psi})} = 0.48 \pm 0.02$$

The ratio is consistent with the prediction0.5 based on isospin symmetry

Study of $e^+e^- \rightarrow \pi^0 Z_C(3900)^0 \rightarrow \pi^0 \pi^0 J/\psi$

A simultaneous PWA is performed on the four data samples

The structures $Z_C(3900)^0$ is clearly observed.

The spin-parity of $Z_C(3900)^0$ is determined to be $I^P = 1^+$

 $M(Z_C(3900)^0) = 3893.0 \pm 2.3 \pm 3.2 \text{ MeV}/c^2$ $\Gamma(Z_C(3900)^0) = 44.2 \pm 5.4 \pm 8.3 \text{ MeV}$

Study of
$$e^+e^-
ightarrow \pi^0 Z_C(3900)^0
ightarrow \pi^0\pi^0 J/\psi$$

PRD 102, 012009 (2020)

✓ The structures Y(4220) is observed in $e^+e^- \rightarrow \pi^0 Z_C(3900)^0 \rightarrow \pi^0 \pi^0 J/\psi$ cross section.

 \checkmark The mass and width of the Y(4220) are measured to be

$$M(Y(4220)) = 4231.4 \pm 5.3 \pm 4.9 \text{ MeV}/c^2$$

 $\Gamma(Y(4220)) = 41.2 \pm 16.0 \pm 16.4 \text{ MeV}$

✓ The relationship between the two exotic states Y(4220) and the $Z_C(3900)^0$ is established for the first time

Observation of the Y(4220) and Y(4390) in the process $e^+e^- \rightarrow \eta J/\psi$

XYZ data: $3.81 \le \sqrt{s} \le 4.60 \text{ GeV} (13.1 \text{ f}b^{-1})$ Rscan data: (0.8 fb⁻¹)

 $\blacksquare J/\psi \rightarrow e^+e^- \text{ or } \mu^+\mu^-, \ \eta \rightarrow \gamma\gamma \text{ and } \eta \rightarrow \pi^+\pi^-\pi^0$

- A simultaneous fit is performed by considering the four processes to extract the signal yield.
- ■Assuming the lowest lying one is ψ (4040), Y(4220) and Y(4390) are observed in the process $e^+e^- \rightarrow \eta J/\psi$

 $\Box Y(4390)$ are observed in the process $e^+e^- \rightarrow \eta J/\psi$ with significance of 6.0 σ for the first time

 $M(Y(4220)) = 4218.6 \pm 3.8 \pm 2.5$ $\Gamma(Y(4220)) = 82.0 \pm 5.7 \pm 0.4$ $M(Y(4390)) = 4382.0 \pm 13.3 \pm 1.7$ $\Gamma(Y(4390)) = 135.8 \pm 60.8 \pm 22.5$

Observation of the Y(4220) and Y(4390) in the process $e^+e^- \rightarrow \eta J/\psi$ PRD 102, 031101(R) (2020)

■The masses and widths of the Y(4220) and Y(4390) are consistent with or close to those of previous measurements

□ The intrinsic scenario for the difference on width is still unknown.

 $M(Y(4220)) = 4218.6 \pm 3.8 \pm 2.5$ $\Gamma(Y(4220)) = 82.0 \pm 5.7 \pm 0.4$ $M(Y(4390)) = 4382.0 \pm 13.3 \pm 1.7$ $\Gamma(Y(4390)) = 135.8 \pm 60.8 \pm 22.5$

Observation of $e^+e^- ightarrow \eta\psi(2S)$

arXiv:2103.01480v2

$4.237 \le \sqrt{s} \le 4.600 \text{ GeV} (5.25 \text{ f} b^{-1})$

$\blacksquare \eta \to \gamma \gamma, \ \psi(2S) \to \pi^+ \pi^- J/\psi, \ J/\psi \to e^+ e^- \ or \ \mu^+ \mu^-$

- The signal yields are determined by Feldman-Cousins method
- The process $e^+e^- \rightarrow \eta \psi(2S)$ is observed for the first time. (S_{tot} =4.9 σ)
- Upper limits on the cross section at 90% C.L. are calculated by using POLE program.
- A partial event reconstruction technique in the future may improve the detection efficiency of this process.

Cross section Measurement of $e^+e^- o \pi^+\pi^-\psi(2S)$

arXiv:2107.09210

An update of the previous BESIII result with improved precision

 $4.01 \le \sqrt{s} \le 4.70 \text{ GeV} (20.1 \text{ f} b^{-1})$

 $\Psi(2S) \rightarrow \pi^+\pi^- J/\psi \text{ (mode I)}, \qquad \qquad \psi(2S) \rightarrow \text{neutrals} + \pi^+\pi^- J/\psi \text{ (mode 2)},$

■ neutrals: π^0 , $\pi^0\pi^0$, η , and $\gamma\gamma$ (here $\gamma\gamma$ from $\psi(2S) \rightarrow \gamma\chi_{cI} \rightarrow \gamma\gamma J/\psi$)

- $I/\psi \to e^+e^- \text{ or } \mu^+\mu^-$
- > The measured cross section is obtained by performing simultaneous fit to $M(\pi^+\pi^-J/\psi)$ and $RM(\pi^+\pi^-)$ spectra.
- The line shape of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ can be described with Y(4220), Y(4390), Y(4660), and continuous component.
- The statistical significances of Y(4220), Y(4390), and Y(4660), are 4.0σ , 16.1σ , and 8.1σ , respectively.

```
M(Y(4220)) = 4234.4 \pm 3.2 \pm 0.2 \quad \Gamma(Y(4220)) = 17.6 \pm 8.1 \pm 0.9

M(Y(4390)) = 4390.3 \pm 6.0 \pm 0.7 \quad \Gamma(Y(4390)) = 143.3 \pm 10.0 \pm 0.5

M(Y(4660)) = 4651.0 \pm 37.8 \pm 2.1 \quad \Gamma(Y(4660)) = 155.4 \pm 24.8 \pm 0.8
```


Cross section Measurement of $e^+e^- o \pi^+\pi^-\psi(2S)$

arXiv:2107.09210

(a)For different processes investigated at the BESIII experiment:

- ✓ Y(4390) states are consistent among different decay modes within uncertainties.
- \checkmark The width of the Y (4220) is smaller than previous results.

(b)For the Y(4360), Y(4390), and Y(4660) observed in $\pi^+\pi^-\psi(2S)$ process by BESIII, Belle and BaBar experiments:

- ✓ The mass of the Y(4390) observed by BESIII are larger than that of the Y(4360) observed by Belle and BaBar.
- ✓ But these results can still be considered as consistent results.

Measurement of $e^+e^- ightarrow \gamma \chi_{c0,c1,c2}$ cross sections

arXiv:2107.03604

Studying the radiative transitions between vector Y-states and χ_{cI}

 $3.773 \le \sqrt{s} \le 4.600 \text{ GeV} (19.3 \text{ f} b^{-1})$

 $\chi_{c0,c1,c2} \rightarrow \gamma J/\psi, J/\psi \rightarrow e^+e^- \text{ or } \mu^+\mu^-$

• To obtain the number of signal events, BESIII uses both fitting $(L_{int} > 400pb^{-1})$ and counting $(L_{int} < 200 \ pb^{-1} \text{ and } \sqrt{s} > 4.009 \ \text{GeV})$ methods.

γχ_{c1} @4.178 GeV: 7.6σ **γχ_{c2}** @4.178 GeV: 6.0σ

Measurement of $e^+e^- \rightarrow \gamma \chi_{c0,c1,c2}$ cross sections

arXiv:2107.03604

✓ The cross section line shape of $e^+e^- \rightarrow \gamma \chi_{c1}$ can be described with ψ (3686), ψ (3770), ψ (4040) and ψ (4160) resonances.

✓ One resonance (R) with significance of 5.8 σ is observed in line shape of the cross section $e^+e^- \rightarrow \gamma \chi_{c2}$,

 $M(R) = 4371.7 \pm 7.5 \pm 1.8 \text{ MeV}/c^2$ $\Gamma^{tot} = 51.1 \pm 17.6 \pm 1.9 \text{ MeV}$

✓ The result supports the Y(4360)/Y(4390) → $\gamma \chi_{c2}$ radiative transition.

• The measurement of $e^+e^- \rightarrow \gamma \chi_{c0,c1,c2}$ cross sections are consistent with the potential model predictions, except for $B[\psi(4160) \rightarrow \gamma \chi_{c2}]$ [PRD 72, 054026 (2005)].

• The charged charmoniumlike structures have been observed in the π^{\pm} +charmonium mass spectra.

Searching for the reaction $e^+e^- \rightarrow \chi_{cJ}\pi^+\pi^-$ and a charmoniumlike structure decaying to $\chi_{cI}\pi^{\pm}$

PRD 103, 052010 (2021)

 $\blacksquare \chi_{cI} \to \gamma J/\psi, J/\psi \to e^+e^- \text{ or } \mu^+\mu^-$

$$4.178 \le \sqrt{s} \le 4.600$$
 GeV (11.2 f b^{-1})

✓ No significant signal has been observed,

Also no charmoniumlike in the invariant mass of the $\chi_{cJ}\pi^{\pm}$ subsystem can be seen

 \checkmark A hint of an slight enhancement for $e^+e^- \rightarrow \chi_{c1}\pi^+\pi^-$

Measurements of $e^+e^- ightarrow \eta_c \pi^+\pi^-\pi^0$, $\eta_c \pi^+\pi^-$, and $\eta_c \pi^0 \gamma$, and search for $Z_c \to \eta_c \pi$

Candidates / (40 MeV

PRD 103, 032006 (2021)

• A maximum-likelihood fit simultaneously for all η_c decay channels to determine the signal yields for each $e^+e^- \rightarrow \eta_c \pi^+\pi^-\pi^0$, $\eta_c \pi^+\pi^-$, and $\eta_c \pi^0 \gamma$

2.8 3 m(2(π⁺π⁻)) [GeV/c²]

2.8 3 3.2 m(K_{*}K⁺π⁻π⁺π⁻) [GeV/c²]

Measurements of $e^+e^- \rightarrow \eta_c \pi^+\pi^-\pi^0$, $\eta_c \pi^+\pi^-$, and $\eta_c \pi^0 \gamma$, and search for $Z_c \rightarrow \eta_c \pi_c$

- The process $e^+e^- \rightarrow \eta_c \pi^+\pi^-\pi^0$ is observed for the first time. ($S_{\text{stat}} / S_{tot} = 5.1\sigma/4.6\sigma@4.226 \text{ GeV}, 5.9\sigma/5.2\sigma@$ Sum of all Data samples)
- The Born cross section $e^+e^- \rightarrow \eta_c \pi^+\pi^-\pi^0$ is measured to be in agreement with the hypothesis of the production of an intermediate Y(4260) resonance decaying to the $\eta_c \pi^+\pi^-\pi^0$ final state.
- The Born cross sections $e^+e^- \rightarrow \eta_c \pi^+\pi^-$ and $\eta_c \pi^0 \gamma$ are found to be consistent with zero and corresponding upper limits are provided

Search for $Z_c \rightarrow \eta_c \pi$ in the $e^+e^- \rightarrow \eta_c \pi^+\pi^-\pi^0$ process

@4.226 GeV (1.1 fb⁻¹)

 $e^+e^- \rightarrow Z_c^+\pi^-\pi^0 \rightarrow (\eta_c\pi^+)\pi^-\pi^0 (or \ c. \ c.) \text{ and } e^+e^- \rightarrow Z_c^0\pi^+\pi^- \rightarrow (\eta_c\pi^0)\pi^+\pi^- \eta_c \rightarrow 16 \text{ modes}$

- The search is realized in terms of a mass and a width scan for Z_c , and a maximum-likelihood fit simultaneously for all $\eta_c \pi$ decay channels
- $Z_c^0 \rightarrow \eta_c \pi^0$ in $e^+e^- \rightarrow \eta_c \pi^+\pi^-\pi^0$ are found to be more significant.

23

Searching for the reaction channel $e^+e^- o \eta_c\eta\pi^+\pi^-$

PRD 103, 032004 (2021)

 $(@4.23, 4.26, 4.36, 4.42, and 4.60 \text{ GeV}(4.1 \text{ f}b^{-1}))$

$$\begin{split} & \Pi_{c} \to \pi^{+}\pi^{-}K^{+}K^{-}, \ 2(K^{+}K^{-}), \ 2(\pi^{+}\pi^{-}), \ 3(\pi^{+}\pi^{-}), \ K_{S}^{0}K^{\pm}\pi^{\pm}, \ K_{S}^{0}K^{\pm}\pi^{\pm}\pi^{+}\pi^{-}, \\ & K^{+}K^{-}\pi^{0}, \ K^{+}K^{-}\eta, \ \pi^{+}\pi^{-}\eta, \ \pi^{+}\pi^{-}\pi^{0}\pi^{0}, \ 2(\pi^{+}\pi^{-})\eta, \ 2(\pi^{+}\pi^{-}\pi^{0}), \ K^{+}K^{-}2(\pi^{+}\pi^{-}), \\ & p\bar{p}, \ p\bar{p}\pi^{0}, \ p\bar{p}\pi^{+}\pi^{-} \\ & \Pi \to \gamma\gamma, \qquad \pi^{0} \to \gamma\gamma, \qquad K_{S}^{0} \to \pi^{+}\pi^{-} \end{split}$$

- The cross section at each center-of-mass energy is determined by a simultaneous fit to the invariant mass of the η_c meson for 16 decay modes.
- No signal is observed, the upper limits at 90% C.L. on cross sections are determined to be

$$\sigma_{4.23\text{GeV}}^{up} = 6.2 \text{ pb}$$
 $\sigma_{4.26\text{GeV}}^{up} = 10.8 \text{ pb}$
 $\sigma_{4.36\text{GeV}}^{up} = 27.6 \text{ pb}$ $\sigma_{4.42\text{GeV}}^{up} = 22.6 \text{ pb}$
 $\sigma_{4.60\text{GeV}}^{up} = 23.7 \text{ pb}$

 It is not yet possible to conclude about possible resonant structures in the finalstate subsystems

Observation of a Near-Threshold Structure in the K^+ Recoil-Mass Spectra in $e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$

 $(@4.63, 4.64, 4.66, 4.68, and 4.60 \text{ GeV}(3.7 \text{ f}b^{-1}))$

Only reconstruct the charged K^+ and D_s^- , via $D_s^- \to K^+ K^- \pi^-$ and $K_s^0 K^-$, $K_s^0 \to \pi^+ \pi^-$

- Fit to the K⁺ recoil mass spectra for five data samples
- ✓ The first Z_{cs} tetraquark candidate $[c\bar{c}s\bar{u}]$ with 5.3 σ is observed in the near the $D_s\bar{D}^*$ and $D_s^*\bar{D}$ mass thresholds.

 $M = (3985.2^{+2.1}_{-2.0} \pm 1.7) \text{ MeV/c}^2$ $\Gamma = (13.8^{+8.1}_{-5.2} \pm 4.9) \text{ MeV}$

✓ The born cross sections $\sigma^{B}[e^{+}e^{-} \rightarrow K^{+}Z_{cs}(3985)^{-} + c.c.]$ times the sum of the branching fractions for $Z_{cs} \rightarrow$ $D_{s}^{-}D^{*0} + D_{s}^{*-}D^{0}$ decays are measured at the five energy points.

✓ An enhancement around 4.68 GeV, Y(4660) ?

 $e^+e^- \rightarrow K^+D_s^{*-}D^0$ $e^+e^- \rightarrow K^+D_s^-D^{*0}$ Data √*s* = 4.681 GeV Total fit 30 (a) Z_{cs}(3985) **D*** (2600)⁰D*⁰ 20 non-Res. MeV/c² $D_{e}^{*} D_{e}^{(*)}$ comb. BKG 4.05 4.1 4.15 Events /(5.0 √*s* = 4.628 GeV √*s* = 4.641 GeV 4.05 41 4.05 = 4.661 GeV √<u>s</u> = 4.698 GeV 15 10 4.05 $RM(K^+)$ (GeV/c²)

PRL 126, 102001 (2021)

Summary

The XYZ states are studied/searched at BESIII.

Search for X(3872) $\geq e^+e^- \rightarrow X(3872)\gamma$ $\geq e^+e^- \rightarrow \pi^0 X(3872)\gamma$ Search for Z states $\geq e^+e^- \rightarrow \chi_{cJ}\pi^+\pi^ \geq e^+e^- \rightarrow \eta_c\pi^+\pi^-\pi^0, \eta_c\pi^+\pi^-, \text{ and } \eta_c\pi^0\gamma$ $\geq e^+e^- \rightarrow \eta_c\eta\pi^+\pi^ \geq e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$

Search for Y states Charmonium + light hadrons: $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$ $e^+e^- \rightarrow \eta J/\psi$ $e^+e^- \rightarrow \eta \psi(2S)$ $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ Charmonium + γ : $e^+e^- \rightarrow \gamma \chi_{c0,c1,c2}$

More results for XYZ states at BESIII will come soon.

•Back up

XYZ: production/decay processes

XYZ	$I^G(J^{PC})$	Production processes	Decay modes
X(3872)	0+(1++)	$B \to KX/K\pi X, e^+e^- \to \gamma X,$	$\pi^+\pi^- J/\psi, \omega J/\psi, D^{*0}ar{D}^0,$
		$pp/p\bar{p}$ inclusive, PbPb, $\gamma\gamma^*$	$\gamma J/\psi, \gamma \psi(2S)$
<i>X</i> (3915)	$0^+(0 \text{ or } 2^{++})$	$B \to KX, \gamma \gamma \to X$	$\omega J/\psi$
<i>X</i> (4140)	$0^{+}(1^{++})$	$B \rightarrow KX, p\bar{p}$ inclusive	
X(4274)	$0^+(1^{++})$		ф I /ли
X(4500)	$0^+(0^{++})$	$B \to KX$	$\psi \mathbf{J}/\psi$
X(4700)	$0^+(0^{++})$		
X(3940)	$?^{?}(?^{??})$	$a^+a^- \rightarrow I/k + V$	$Dar{D}^*$
<i>X</i> (4160)	$?^{?}(?^{??})$	$e e \rightarrow J/\psi + X$	$D^*ar{D}^*$
<i>X</i> (4350)	$0^+(?^{?+})$	$\gamma\gamma \to X$	$\phi J/\psi$
<i>Y</i> (4008)	0-(1)	$e^+e^- \to Y$	$\pi\pi J/\psi$
<i>Y</i> (4260)	$0^{-}(1^{})$	$e^+e^- \to Y$	$\pi\pi J/\psi, Dar{D}^*\pi, \chi_{c0}\omega, h_c\pi\pi$
<i>Y</i> (4360)	0-(1)	$a^+a^- \rightarrow V$	$\pi\pi (\mathcal{B}(2S))$
<i>Y</i> (4660)	0-(1)	$e \ e \ \rightarrow 1$	$\pi\pi\psi(2S), \Lambda_c\bar{\Lambda}_c$
$Z_c(3900)$	$1^+(1^{+-})$	$e^+e^- \rightarrow \pi Z_c$, inclusive <i>b</i> -hadron decays	$\pi J/\psi, Dar{D}^*$
$Z_c(4020)$	$1^+(?^{?-})$	$e^+e^- o \pi Z_c$	$\pi h_c, D^*ar{D}^*$
$Z_1(4050)$	$1^{-}(?^{?+})$	$B \to K7$	π^{\pm} V i
$Z_2(4250)$	$1^{-}(?^{?+})$	$D \rightarrow K Z_C$	$\pi \chi_{c1}$
$Z_c(4200)$	$1^+(1^{+-})$	$P \to K7$	$\pi^{\pm}J/\psi$
$Z_c(4430)$	$1^{+}(1^{+-})$	$D \rightarrow K Z_C$	$\pi^{\pm}J/\psi,\pi^{\pm}\psi(2S)$
$Z_{cs}(3985)$	$\frac{1}{2}(?^{?})$	$e^+e^- \to KZ_{cs}$	$ar{D}_{s}D^{*},ar{D}_{s}^{*}D$

Table from F. K. Guo on 7th XYZ meeting

Cross section measurement of $e^+e^- o \eta' J/\psi$

PRD 101, 012008 (2020)

$4.178 \le \sqrt{s} \le 4.600 \text{ GeV} (11 \text{ f} b^{-1})$

 $I/\psi \rightarrow e^+e^- \text{ or } \mu^+\mu^-, \eta' \rightarrow \gamma \pi^+\pi^- (\text{mode 1}) \text{ and } \eta' \rightarrow \pi^+\pi^-\eta, \eta \rightarrow \gamma \gamma (\text{mode2})$

 \Box A simultaneous is performed for the two η' decay modes to extract the signal yield.

 $\Box e^+e^- \rightarrow \eta' J/\psi$ cross section cannot be described by a single $\psi(4160)$ or Y(4260) resonance

■A coherent sum of ψ (4160) and Y(4260) resonances offers a better description to $e^+e^- \rightarrow \eta' J/\psi$ cross section

The significances for the $\psi(4160)$ and Y(4260) are 6.3 σ and 4.0 σ

Observation of a near-threshold enhancement in the $\Lambda\overline{\Lambda}$ mass spectrum from $e^+e^- o \phi\Lambda\overline{\Lambda}$

arXiv:2104.08754

 $3.51 \le \sqrt{s} \le 4.60 \text{ GeV} (19.5 \text{ f} b^{-1})$

 $\mathbf{\Phi} \phi \to \mathrm{K}^+\mathrm{K}^-, \Lambda(\overline{\Lambda}) \to p\pi^-(\overline{p}\pi^+), \text{ missing } \overline{\Lambda}(\Lambda)$

- Several light hadron decays of Y states have been searched by the BESIII, $Y(4260) \rightarrow \pi^0(\eta)p\bar{p}$, $K^+K^-\pi^0$, $\Xi\bar{\Xi}$, etc. But no significant signals.
- \succ The $e^+e^- \rightarrow \phi \Lambda \overline{\Lambda}$ process has been observed for the first time
- Due to the limited sample sizes, cannot resolve the composition of the resonance structure

 \checkmark A near-threshold enhancement is observed on $\Lambda\overline{\Lambda}\,$ mass spectrum with a significance greater than 25 σ

$$M = 2262 \pm 4 \pm 28 \text{ MeV}/c^2$$
 $\Gamma = 72 \pm 5 \pm 43 \text{ MeV}$
 $I^{PC} = 2^{++}, 2^{-+}, \text{ or } 1^{++}$

✓ This enhancement could be the same thing observed in $B \rightarrow K\Lambda\overline{\Lambda}$ decays by Belle [PRD 79, 052006 (2009)] ³⁰

Studies of $e^+e^- ightarrow 2(p\overline{p})$, $p\overline{p}\eta$, and $p\overline{p}\omega$

- No significant structure is observed in the lineshape of $e^+e^- \rightarrow 2(p\bar{p})$
- No evidence for a resonant contribution from a fit to the $e^+e^- \rightarrow p\bar{p}\eta$, and $p\bar{p}\omega$ lineshapes
- Upper limit at the 90% CL on cross section
- 7.5 pb for $\psi(4230) \rightarrow p\bar{p}\eta$
- 10.4 pb for $\psi(4230) \rightarrow p\bar{p}\omega$