

Charm Physics at LHCb

Surapat Ek-In EPFL, Lausanne, Switzerland

On behalf of the LHCb collaboration

20th Lomonosov Conference on Elementary Particle Physics

Charm Physics Programme @LHCb

- Mixing and CP violation
 - First observation of a difference between D⁰ mass eigenstates [arXiv:2106.03744]
 - Time-dependent CPV search in $D^0 \rightarrow K^+K^-$, $\pi^+\pi^-$ [arXiv:2105.09889]
 - Time-integrated CPV search in $D^0 \rightarrow K^0_{\ S} K^0_{\ S}$ [arXiv:2105.01565]
- Production and spectroscopy
 - Lifetime of Ω_{c}^{0} [LHCb-PAPER-2021-021(Preliminary)]
- Rare decays
 - Flavour-changing neutral current (FCNC)
 - etc.

LHCb experiment

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

Surapat Ek-In

Charm Physics @LHCb

Charm Productions at the LHCb experiment

- Unique
 - Up-type quark decay
 - New physics coupling can be probed
- Indirect CPV in charm decays
 - Small mixing, sensitive to CPV
 - Probe high BSM scales (suppressed in SM)
- Large cross section
 - Billions of charm hadron decays to be studied at LHCb!

Semileptonic [µ-tagged]

Surapat Ek-In

Mixing and CPV

Mixing parameters

• Flavour mixing is the transition between a neutral flavoured meson and its antiparticle. The time evolution is described by

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^0(t) \\ \overline{D}^0(t) \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2} \mathbf{\Gamma} \right) \begin{pmatrix} D^0(t) \\ \overline{D}^0(t) \end{pmatrix}$$

- Eigenstates of this Hamiltonian are

$$|D_{1,2}
angle=p|D^0
angle\pm q|\overline{D}^0
angle$$
 with eigenvalues $\omega_{1,2}\equiv m_{1,2}-rac{i}{2}\Gamma_{1,2}$

$$x \equiv (m_1 - m_2)/\Gamma = \Delta m/\Gamma$$
 $y \equiv (\Gamma_1 - \Gamma_2)/2\Gamma = \Delta \Gamma/2\Gamma$

- Mixing parameters in charm <u>have yet to be measured with high</u> precision. [Mixing occurs when x and y ≠ 0]
- Measurements of these parameters are <u>sensitive to probe physics</u>
 <u>beyond the Standard Model (SM).</u>

SM:
$$x, y \in [10^{-6}, 10^{-1}]$$

Charm Physics @LHCb

Mixing and CPV

Direct CPV

CPV in mixing

CPV in decay-mixing interference

Charm Physics @LHCb

$D^0 \rightarrow K^0_{ m s} \pi^+ \pi^-$

LHCb measures tiny mass difference between particles

The result is a milestone in the study of how a particle known as a D0 meson changes from matter into antimatter and back

8 JUNE, 2021 | By Ana Lopes

First non-zero

measurement of x

The LHCb collaboration has measured the tiny mass difference between the D1 and D2 mesons, which are a manifestation of the quantum superposition of the D0 particle and its antiparticle. This mass difference controls the speed of the D0 oscillation into its antiparticle and back. (Image: CERN)

Surapat Ek-In

Charm Physics @LHCb

Phys. Rev. D 99, 012007

$D^0 \rightarrow K^0_{ m s} \pi^+ \pi^-$

- Self-conjugate decay
 - Reconstruction efficiency is equivalent between D^0 flavours.
 - Decay path: Cabibbo-favored (CF),

Doubly-Cabibbo-suppressed (DCS)

- Mixing and indirect CPV
 - Sensitive to x, y
 - Indirect CPV measurement of q/p and $\phi_{\rm f}$
- Analysis approaches: Model independent with Binflip method
 - Measure the time-dependent ratio between positive and negative Dalitz bins of constant strong phase difference, which gives access to mixing parameters
 - Suppress biases due to nonuniform event reconstruction efficiencies.
- Analysis on Run 2 dataset π-tagged sample

Surapat Ek-In

Charm Physics @LHCb

Binflip method

$$R_{bj} = \frac{N_{-bj}}{N_{+bj}} = \frac{\langle t \rangle_j \sqrt{r_b} \operatorname{Re} \left(X_b^* z\right) + \frac{1}{4} \langle t^2 \rangle_j |z|^2 + r_b \left[1 + \frac{1}{4} \langle t^2 \rangle_j \operatorname{Re} \left(z^2\right)\right]}{\langle t \rangle_j \sqrt{r_b} \operatorname{Re} \left(X_b z\right) + \frac{1}{4} \langle t^2 \rangle_j |z|^2 r_b + \left[1 + \frac{1}{4} \langle t^2 \rangle_j \operatorname{Re} \left(z^2\right)\right]}$$

- Measure the ratio of signal yields between Dalitz bins -b and +b, in bins of the decay time j.
- z = y ix and r_b is the ratio at t = 0.
- Strong phase differences: $X_b = c_b is_b$ [constrained from CLEO and BESIII, <u>arXiv:2003.00091</u>]
- With CP conservation (q/p = 1):

$$R_{bj}^{\pm} \approx r_b - \langle t \rangle_j \sqrt{r_b} \big[(1 - r_b) c_b \ y - (1 + r_b) s_b \ x \big]$$

- Sensitive to both *x* and *y* parameters!

Charm Physics @LHCb

Surapat Ek-In

Semileptonic [µ-tagged]

- Model independent Binflip Method
 - Cover wider decay time distribution because events are selected with muon candidate
 - Combination with prompt sample
- Model dependent amplitude model
 - Perform amplitude fit with parameterized Dalitz and decay time efficiencies

Time-dependent CPV in $D^0 \rightarrow h^+ h^ (h = K, \pi)$

arXiv:2105.09889

Charm Physics @LHCb

Time-dependent CPV in $D^0 \to h^+ h^ (h = K, \pi)$

arXiv:2105.09889

Surapat Ek-In

Charm Physics @LHCb

Measurement of CPV in $D^0 \rightarrow K^0_S K^0_S$

arXiv:2105.01565

- Time-integrated CPV search
 - Measure decay width difference between *D*⁰ flavours

 $\mathcal{A}^{CP}(K^0_{\mathrm{S}}K^0_{\mathrm{S}}) = \frac{\Gamma(D^0 \to K^0_{\mathrm{S}}K^0_{\mathrm{S}}) - \Gamma(\overline{D}{}^0 \to K^0_{\mathrm{S}}K^0_{\mathrm{S}})}{\Gamma(D^0 \to K^0_{\mathrm{S}}K^0_{\mathrm{S}}) + \Gamma(\overline{D}{}^0 \to K^0_{\mathrm{S}}K^0_{\mathrm{S}})}$

• This quantity can be large up to around 1%

Phys. Rev. D 92, 054036

Charm Physics @LHCb

Analysis on Run 2 dataset π-tagged sample

 $\mathcal{A}^{CP}(K_{\rm S}^0 K_{\rm S}^0) = (-3.1 \pm 1.2 \pm 0.4 \pm 0.2)\%$

- Consistent with no CPV at 2.4σ
- Most precise measurement up to date!

Surapat Ek-In

Lifetime of Ω_c^0 baryon

LHCb-PAPER-2021-021

Charm hadron hierarchy

• On PDG 2018

$$\tau_{\Xi_c^+} > \tau_{\Lambda_c^+} > \tau_{\Xi_c^0} > \tau_{\Omega_c^0}$$

• In 2018, LHCb measured longer $\,\Omega^0_{c}$ lifetime in semileptonic b-baryon decays

$$\tau_{\Xi_{c}^{+}} > \tau_{\Omega_{c}^{0}} > \tau_{\Lambda_{c}^{+}} > \tau_{\Xi_{c}^{0}}$$
PRL 121, 092003(2018)

- Cross-check the result with an independent sample
 - Run 2 dataset on promptly produced

 $\Omega^0_{c}/\Xi^0_{c} \rightarrow pK^-K^-\pi^+$ final state

- Use prompt $D^0 \rightarrow K^-K^+\pi^-\pi^+$ decays as control mode
- Estimate lifetime with least squares fits to decay time

Surapat Ek-In

Charm Physics @LHCb

LHCb-PAPER-2021-021

Lifetime of $\,\Omega^0_{m c}$ baryon

- LHCb has produced the largest dataset of charm hadrons.
 - This leads to new interesting results and provides often world-best measurements
 - More results are coming soon!
- However, the measurements are limited by statistics
 - This is expected to be improved in Run 3 which is starting next year with luminosity up to 50/fb by 2030
 - Working on preparing upgraded detector as well as upgraded online trigger

Thank you! Any questions?

BACKUP

Mixing and CPV

• Mass eigenstates of neutral meson mixing

 $|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}{}^0\rangle$

Usually described by mixing parameters x, y

$$x = \frac{m_2 - m_1}{\Gamma}, y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}, \Gamma = \frac{\Gamma_2 + \Gamma_1}{2}$$

- and interference parameter $\phi_f \equiv \arg(\frac{qA_f}{pA_f})$
- Mixing occurs when x and $y \neq 0$

• There are different scenarios of CPV

<u>Direct CPV</u>

CPV in mixing

Surapat Ek-In

Charm Physics @LHCb

$$\begin{aligned} x_{CP} &= (3.97 \pm 0.46 \pm 0.29) \times 10^{-3} \\ y_{CP} &= (4.59 \pm 1.20 \pm 0.85) \times 10^{-3} \\ \Delta x &= (-0.27 \pm 0.18 \pm 0.01) \times 10^{-3} \\ \Delta y &= (0.20 \pm 0.36 \pm 0.13) \times 10^{-3} \end{aligned}$$

First observation of a difference between D^0 mass

eigenstates with significance of more than 7σ . ,

However, no significant of CPV is observed.

Source	$x_{C\!P}$	y_{CP}	Δx	Δy
Reconstruction and selection	0.199	0.757	0.009	0.044
Secondary charm decays	0.208	0.154	0.001	0.002
Detection asymmetry	0.000	0.001	0.004	0.102
Mass-fit model	0.045	0.361	0.003	0.009
Total systematic uncertainty	0.291	0.852	0.010	0.110
Strong phase inputs	0.23	0.66	0.02	0.04
Detection asymmetry inputs	0.00	0.00	0.04	0.08
Statistical (w/o inputs)	0.40	1.00	0.18	0.35
Total statistical uncertainty	0.46	1.20	0.18	0.36

• Oscillation parameters

$$x_{CP} = -\operatorname{Im}\left(z_{CP}\right) = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right],$$

$$\Delta x = -\operatorname{Im}\left(\Delta z\right) = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right],$$

$$y_{CP} = -\operatorname{Re}\left(z_{CP}\right) = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right],$$

$$\Delta y = -\operatorname{Re}\left(\Delta z\right) = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right].$$

• Sensitivity to *x*

$$R_{bj}^{\pm} \approx \frac{r_b + \langle t \rangle_j \sqrt{r_b} \operatorname{Re} \left(X_b^* z \right)}{1 + \langle t \rangle_j \sqrt{r_b} \operatorname{Re} \left(X_b z \right)}$$

$$\approx r_b + \langle t \rangle_j \sqrt{r_b} \left[\operatorname{Re} \left(X_b^* z \right) - r_b \operatorname{Re} \left(X_b z \right) \right]$$

$$= r_b - \langle t \rangle_j \sqrt{r_b} \left[(1 - r_b) c_b \ y - (1 + r_b) s_b \ x \right],$$

Time-dependent CPV in $D^0 \rightarrow h^+ h^ (h = K, \pi)$

Systematic source	$\Delta A_{\Gamma}(K^-\pi^+) \ [10^{-4}]$	$\Delta A_{\Gamma}(K^+K^-) \ [10^{-4}]$	$\Delta A_{\Gamma}(\pi^{+}\pi^{-}) \ [10^{-4}]$
$m(h^+h^-)$ background	0.00	0.06	0.03
Subtraction of the $m(D^0\pi^+_{\text{tag}})$ background	0.12	0.24	0.34
Flavour dependent shift of $m(D^{*+})$ peak	0.14	0.14	0.14
Secondary decays	0.08	0.08	0.08
Kinematic weighting	0.05	0.05	0.05
Total systematic Statistical	$\begin{array}{c} 0.23 \\ 0.50 \end{array}$	$0.32 \\ 1.52$	$0.39 \\ 2.81$

Time-dependent CPV in $D^0 \rightarrow h^+ h^ (h = K, \pi)$

- The analysis procedure is controlled on Kπ channel where CPV is not expected.
- We found no significant CPV in the channel, and the analysis is not affected significantly by the systematics.

Source	$\Delta Y_{K^+K^-}[10^{-4}]$	$\Delta Y_{\pi^+\pi^-}[10^{-4}]$
Subtraction of the $m(D^0\pi^+_{\text{tag}})$ background	0.2	0.3
Flavour-dependent shift of D^* -mass peak	0.1	0.1
D^{*+} from <i>B</i> -meson decays	0.1	0.1
$m(h^+h^-)$ background	0.1	0.1
Kinematic weighting	0.1	0.1
Total systematic uncertainty Statistical uncertainty	$\begin{array}{c} 0.3 \\ 1.5 \end{array}$	$\begin{array}{c} 0.4 \\ 2.8 \end{array}$

Sample	2015 -	$+ 2016 (2 \text{ fb}^{-1})$	$2017 + 2018 \ (4 \ { m fb}^{-1})$	
	Yield	\mathcal{A}^{CP} $[\%]$	Yield	$\mathcal{A}^{C\!P}~[\%]$
LL PV-comp.	1388 ± 41	$0.3 \pm 2.5 \pm 0.6$	4056 ± 77	$-4.3 \pm 1.6 \pm 0.4$
LL PV-incomp.	178 ± 31	-11 ± 17 ± 2	430 ± 41	$-3.0 \pm 7.9 \pm 1.1$
LD PV-comp.	411 ± 25	$-7.2 \pm 5.8 \pm 1.1$	1145 ± 49	$-2.9 \pm 3.8 \pm 0.7$
LD PV-incomp.	58 ± 18	$-10 \pm 31 \pm 4$	349 ± 64	-5 ± 17 ± 2
DD	_	_	87 ± 28	$-35 \pm 47 \pm 6$

Lifetime of Ω_c^0 baryon

Charm Physics @LHCb

Lifetime of $\,\Omega_c^0\,$ baryon

Sources	$ au_{arOmega_c^0} \; [\mathrm{fs}]$	$ au_{\Xi_c^0} \; [\mathrm{fs}]$
Fit model	2.2	1.0
Calibration sample size	0.1	0.1
Kinematic correction	3.4	0.4
Decay-time resolution	1.3	1.8
$\chi^2_{ m IP}~{ m scaling}$	1.1	0.5
Decay-length scale	0.1	0.1
$D^0 - \overline{D}^0$ mixing	0.8	0.6
Total systematic uncertainty	4.4	2.2
D^0 lifetime	0.7	0.2
Statistical uncertainty	13.4	2.3