Recent Results from the Telescope Array Experiment

Heungsu Shin (ICRR, University of Tokyo) For the Telescope Array Collaboration 20th Lomonosov Conference on Elementary Particle Physics

Index

- 1. Telescope Array Experiment and TAx4 expansion
- 2. Energy spectrum results
- 3. Composition and Hadronic interactions results
- 4. Anisotropy results
- 5. Interdisciplinary results
- 6. Summary

Telescope Array Experiment

Collaboration

160 Members, 35 Institutes, 7 countries

R.U. Abbasi^{1,2}, M. Abe³, T. Abu-Zayyad^{1,2}, M. Allen², Y. Arai⁴, R. Arimura⁴, E. Barcikowski², J.W. Belz², D.R. Bergman², S.A. Blake², I. Buckland², R. Cady², B.G. Cheon⁵, J. Chiba⁶, M. Chikawa⁷, T. Fujil⁸, K. Fujisue⁷, K. Fujista⁴, R. Fujiwara⁴, M. Fukushima⁷, R. Fukushima⁴, G. Furlich², R. Gonzalez², W. Hanlon², M. Hayashi⁹, N. Hayashida¹⁰, K. Hibino¹⁰, R. Higuchi⁷, K. Honda¹¹, D. Ikeda¹⁰, T. Inadomi¹², N. Inoue³, T. Ishii¹¹, H. Ito¹³, D. Ivanov², H. Iwakura¹², A. Iwasaki⁴, H.M. Jeong¹⁴, S. Jeong¹⁴, C.C.H. Jui², K. Kadota¹⁵, F. Kakimoto¹⁰, O. Kalashev¹⁶, K. Kasahara¹⁷, S. Kasami¹⁸, H. Kawai¹⁹, S. Kawakami⁴, S. Kawana³, K. Kawata⁷, I. Kharuk¹⁶, E. Kido¹³, H.B. Kim⁵, J.H. Kim², J.H. Kim², M.H. Kim¹⁴, S.W. Kim¹⁴, Y. Kimura⁴, S. Kishigami⁴, Y. Kubota¹², S. Kurisu¹², V. Kuzmin¹⁶, M. Kuznetsov^{16,20}, Y.J. Kwon²¹, K.H. Lee¹⁴, B. Lubsandorzhiev¹⁶, J.P. Lundquist^{2,22}, K. Machida¹¹, H. Matsumiya⁴, T. Matsuyama⁴, J.N. Matthews², R. Mayta⁴, M. Minamino⁴, K. Mukai¹¹, I. Myers², S. Nagataki¹³, K. Nakai⁴, R. Nakamura¹², T. Nakamura²³, T. Nakamura¹², Y. Nakamura¹², A. Nakazawa¹², T. Nonaka⁷, H. Oda⁴, S. Ogio^{4,24}, M. Ohnishi⁷, H. Ohoka⁷, Y. Oku¹⁸, T. Okuda²⁵, Y. Omura⁴, M. Onoj³, R. Onogi⁴, A. Oshima⁴, S. Ozawa²⁶, I.H. Park¹⁴, M. Potts², M.S. Pshirkov^{16,27}, J. Remington², D.C. Rodriguez², Y. Shibasaki¹², F. Shibata¹¹, N. Shibata¹⁸, T. Shibata⁷, H. Shimodair⁷, B.K. Shin²⁸, H.S. Shin⁷, D. Shinto¹⁸, J.D. Smith², P. Sokolsky², N. Sone¹², B.T. Stokes², T.A. Stroman², T. Suzawa³, Y. Takagi⁴, Y. Takahashi⁴, M. Takamura⁶, M. Takada⁷, R. Takeshi⁷, A. Taketa²⁹, M. Takita⁷, Y. Tameda¹⁸, H. Tanaka⁴, K. Tanaka⁴, K. Tanaka⁴, Y. Tanoue⁴, S.B. Thomas², G.B. Thomso⁷, P. Tinyakov^{16,20}, I. TKachev¹⁶, H. Tokuno³², T. Tomida¹², S. Troitsky¹⁶, R. Tsuda⁴, Y. Tsunesada^{4,24}, Y. Uchi

¹ Loyola University Chicago ² University of Utah ³ Saitama University ⁴ Osaka City University ⁵ Hanyang University ⁶ Tokyo University of Science ⁷ University of Tokyo (ICRR) ⁸ Kyoto University ⁹ Shinshu University ¹⁰ Kanagawa University ¹¹ University of Yamanashi ¹² Shinshu University (Inst. of Engineering) ¹³ RIKEN ¹⁴ Sungkyunkwan University ¹⁵ Tokyo City University ¹⁶ Institute for Nuclear Research of the Russian Academy of Sciences ¹⁷ Shibaura Institute of Technology ¹⁸ Osaka Electro-Communication University ¹⁹ Chiba University ²⁰ Université Libre de Bruxelles ²¹ Yonsei University ²² University of Nova Gorica ²³ Kochi University ²⁴ Osaka City University (Nambu Yoichiro Institute) ²⁵ Ritsumeikan University ²⁶ National Inst. for Information and Communications Technology, Tokyo ²⁷ Lomonosov Moscow State University ²⁸ Ulsan National Institute of Science and Technology ²⁹ University of Tokyo (Earthquake Inst.) ³⁰ Hiroshima City University ³¹ KEK ³² Tokyo Institute of Technology ³³ National Instit. for Quantum and Radiological Science and Technology ³⁴ CEICO, Institute of Physics, Czech Academy of Sciences ³⁵ Ewha Womans University

Telescope Array Experiment

The Largest UHECR Observatory on the Northern Hemisphere

• Millard county, Utah, USA

Science Goals

- Origin and properties of ultra-high-energy cosmic rays
- High energy hadronic interactions
- Multi-messenger studies with photons, neutrino, DM
- Interdisciplinary studies with Thunderstorms, TGF, Meteoroids

Telescope Array Experiment

Middle Drum (MD) • and and and -----Hinckle and and also and also and also and also also also also also also also ain ain ain ain ain **Central Laser Facility** NG 200 200 200 200 ng Ridge win win win win win will ten min min min min min min Blok Rock Long Ridge (LR) nin sin this and this ain an an an CHA 100 COL 100 COL 100 COL 100 COL 100

Surface Detectors

- 507 scintillation detectors
- 3 m² detection area
- 1.2 km spacing
- ~700 km² coverage

Fluorescence Detectors
3 stations (BRM, LR, MD)
12 - 14 telescopes

Black Rock Mesa (BRM)

TALE (Low Energy Extension)

Higher elevation FD & Densely deployed SD for lower energy

 TALE FD located at MD station (10 telescopes) Elevation 30° - 57°

 TALE SD array 104 Scintillation detectors (Design identical to TASD) Various spacing up to 400 m

TA×4

The most recent upgrade of TA 4-fold increase in size of TA SD array

- Up to ~3,000 km²
- 2 additional FD stations for Hybrid
- Observation started since 2019

TA combined spectrum

Instep feature

- Pierre Auger reported a spectrum hardening in 10¹⁹eV 10^{19.5}eV
- Combining TASD, TAFD, Hires data, we observe the Instep feature in the Northern hemisphere at $10^{19.25\pm0.03}$ eV with 5.3 σ significance

TA + PAO Joint spectrum working group result

- Absolute energy scale difference of 9 %
- Energy dependent shift ±10 % per decade

Preliminary TA×4 SD spectrum

TALE monocular Xmax

Mean X_{max} [g cm⁻²]

800

750

700

650

600

550¹

Eraction TALE Mean X_{max} vs energy 0.8 TALE Xmax (ICRC 2021 Update) 0.6 He BR/LR hybrid (ApJ 2018) CNO **Fit TALE Xmax** 0.4 Fe 0.2 Fractions corrected for acceptance bias 5 18 log₁₀ (E [eV]) 15.5 16 16.5 17 17.5 TALE Measured Mean log(A) [EPOS-LHC] < (N) > 62.30 ± 4.36 CNO 2.5 $bp = 17.20 \pm 0.03$ PRELIMINARY s1 = 34.61 ± 0.30 He 1.5 fit parameters; s1, s2, bp: slope, break point ¹⁹ 19.5 log₁₀ (E [eV]) 16 16.5 17 17.5 18 18.5 0.5 Н 15.5 16 16.5 17 17.5 18

log₁₀ (E [eV])

TALE Measured Primary Fractions [EPOS-LHC]

TALE & TA Hybrid trigger Xmax

TALE Hybrid

TA Hybrid trigger

TA SD composition

Machine Learning based on BDT

- 16 composition-sensitive observables
- 12 years of TASD data

TA SD UHE photon limits

New p-y classifier based on neural network

- 16 composition-sensitive observables
- Full time-resolved signals from all triggered SD

 $10^{19.5}$

1

 $10^{20.0}$

0

 $10^{19.0}$

2

 E_0, eV γ candidates

TA p-air cross-section

Anisotropy : Dipole

Residual intensity between data and isotropic distribution

- Energy threshold E > 8.8 EeV (Corresponding to Auger threshold E > 8 EeV)
- TASD 12 years data

- TA result : $r_{\alpha} \sim 3.1 \% \Phi_{\alpha} \sim 134^{\circ}$
- Auger result : $r_{\alpha} \sim 4.7 \% \Phi_{\alpha} \sim 100^{\circ}$

Anisotropy : Hotspot

12 years Hotspot update

- Energy threshold E > 57 EeV
- Overall post-trial significance from 3.4 σ to 3.2 σ
- Growth rate of events inside the hotspot : Consistent with the linear in 1 σ

Anisotropy : Medium scale

Hint of excess in the direction of Perseus-Pisces supercluster

• Energy threshold E > 40 EeV

Terrestrial Gamma-ray Flash

Observation of TGF with TASD

- Broadband interferometer (INTF)
 2D high-resolution reconstruction with three 20 80 MHz flatplate antennas
- Fast Sferic Sensor (FA)

Detects E-field change, Identifies substructure of initial breakdown pulses

Thunderstorm

TASD trigger rate variation during thunderstorms

- Level-0 trigger rate is monitored at 10 minutes resolution
- Result may be interpreted by using EFIELD option of CORSIKA
- Trigger rate increase or deficit depends on E-field type of thunderstorm

22

TALE-infill

Ongoing extension plan for TALE for extra low-E sensitivity

- Aiming the physics of PeV cosmic ray
- 100 m + 200 m spacing covering 0.8 km²

Summary

- 1. Energy spectrum measured for 5 decades, $10^{15.5}$ eV to $10^{20.5}$ eV
 - New feature "Instep" in the energy spectrum at $\sim 10^{19.3}$ eV
 - TALE energy spectrum indicated that 2nd knee may be resulted from Peters cycle
- 2. TALE Xmax shows composition becoming heavier between knee and 2nd knee
- 3. TA Hybrid data is compatible with predominantly light elements between $10^{18.0}$ eV and $10^{19.1}$ eV
- 4. Indications of anisotropy at highest energy
 - Hotspot from 12 years of data in the direction of Ursa Major (3.2σ)
 - Hint of excess in the direction of Perseus-Pisces $E > 10^{19.3} eV$
- 5. TA×4 started operation and preliminary energy spectrum is measured
- 6. More expansion plan TALE infill is ongoing