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® Monitoring the near-Earth electromagnetic environment

® Measuring iono-magnetospheric perturbations possibly due to
seismo-electromagnetic phenomena

® Monitoring man-made electromagnetic effects at Low Earth Orbit
altitude

¢ Studying spectra of charged particles precipitating from Van Allen
radiation belts

® Observing changes in solar activity



Platform Mass ~ 700 kg ¥ —
Orbit Type Sun-Synchronous

Altitude 507 km

Inclination 97°

Period 94 minutes

Local time descending node 14:00

Revisit period 5 days
Mission Life Span > 5 years

LP

GNSS-RO

The ltalian instrument, HEPD-01, was launched on board CSES-01 from the Jiuquan Satellite
Launch Center in the Gobi Desert (Inner Mongolia) on February 2", 2018




The Italian Collaboration is named
after the Italian missionary in China,
Matteo Ricci (1552-1610), whose
Mandarin name was Li-madou.
Several Italian institutes and
universities are involved:

m Italian Space Agency (ASI)

m Italian National Institute for Nuclear

Physics (INFN)
m Universities of Trento, Bologna, Rome

Tor Vergata, Naples and
UNINETTUNO

m ltalian National Institute of
Astrophysics and Planetology
(INAF-IAPS)

m ltalian National Institute of
Geophysics and Volcanology (INGV)
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2 planes (213.2x214.8x0.3 mm?) of double-sided silicon
microstrip sensors (TRACKER) — track-related information

1 layer (20x18x0.5 cm3) of plastic scintillator (TRIGGER) —
start acquisition

range calorimeter comprising:
» 16 layers of 15x15X%1 cm? plastic scintillators
(TOWER), read out by 2 PMTs each— energy deposit
> 3x3 matrix (15x15x4 cm3) of inorganic crystals
(LYSO), read out by 1 PMT each — increase range
5 5 mm-thick plastic scintillator planes (VETO) — reject
up-going or not fully-contained particles [1]
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En. range (e”)

3 MeV-100 MeV

En. range (p)

30 MeV-250 MeV

Angular resol.

< 8° @5 MeV

Energy resol.

< 10% @ 5 MeV

Acceptance

~400 cm?sr

Mass (+ el.)

~44 kg




Low-energy cosmic-ray physics:

® Galactic cosmic-ray (GCR) hydrogen spectra in the 40-250 MeV range
(published in [2])

® Cosmic electron plus positron spectrum in the 10-100 MeV range
(preliminary)

¢ Re-entrant lepton spectrum in the 10-100 MeV range (preliminary)

Physics of the radiation belts:

® Proton fluxes inside the South Atlantic Anomaly (SAA) in the 40-250
MeV range (currently under review at PRD)

Solar and magnetosphere physics:
¢ Observation of the August 2018 geomagnetic storm (published in [3])
® Observation of the May 2021 geomagnetic storm (preliminary)
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¢ Calorimeter (TOWER+LYSO) measures the energy loss per unit
length — good separation of various species (> 90%)

® Check with Monte Carlo simulations for selection efficiency estimation



* Three semiannual galactic hydrogen spectra as a function of
energy between 40 and 250 MeV were obtained in three different
consecutive time periods (from August 6" 2018 to January 5t
2020)

¢ Static map (IGRF-12 [4] 4+ Tsyganenko-89 [5]) was used to select
galactic particles. Even if HEPD-01 is switched off at +-65°, its high
field-of-view allows to collect GCRs for a fair amount of time per day
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Only fully-contained protons were included in the flux sample to better
estimate the initial energy of the proton

Multi-particle events were rejected by requiring no hits on the VETO
system and only a single hit trigger paddle in the final sample

Only a single hit crystal of LYSO was required to reject possible
electromagnetic showers due to mis-identified high-energy electrons

Up-going protons were rejected by requiring no hits in the bottom
layer of the VETO system

Selection efficiencies were checked with Monte Carlo simulations

Bayesian approach was used to take into account passive structures of
HEPD-01 and unfold the final spectrum
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e HEPD-01 is not able to separate electrons from positrons
® Preliminary spectrum of ~400 cosmic electrons plus positrons
(61 days of collected statistics) selected by using backtracing
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¢ Electrons and positrons are largely produced (in roughly equal
number) by the nuclear component of the GCRs in reaction with the

Earth's atmosphere: 7% — pt — e*

® Re-entrant electrons and positrons are generated with upward-going
directions, but their trajectories are bent back to the Earth itself by
the geomagnetic field

® |n order to separate electrons and positrons from protons, ionization
energy losses inside each calorimeter plane are required to be
compatible with the expectation for a singly charged minimum ionizing
particle (MIP)

® Sub-cutoff particles are selected outside the SAA:
1.1 Rg < L-shell < 1.2 Rg and B > 23000 nT



e HEPD-01 data are shown together with PAMELA measurements [6]
(same L-shell cut and good agreement in the overlapping region) and
with a theoretical model [7] used for the calculation of secondary electron
and positron fluxes at the top of atmosphere

e Qur future goal is to extend the measurement below 10 MeV
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Geomagnetically trapped protons forming the so-called inner rad|at|on
belt. The South Atlantic Anomaly (SAA) is the closest region to the
Earth's surface

Such protons are originated from (3-decay of free neutrons produced in
the interaction of GCRs with the Earth's atmosphere, known as
Cosmic Ray Albedo Neutron Decay (CRAND) mechanism

The scientific community has been considerably involved in modeling
such space radiation environment with the aim of better assessing the
significant radiation hazard to spacecraft and human crews

The NASA AE9/AP9 set of models for high-energy electrons and
protons, respectively, is the most complete and recent one [8]

Since both AE9 and AP9 are partly incomplete, it is of key importance
to test such models and, above all, to provide new and reliable
data-sets from in-flight instruments to improve their predictions
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SAA proton energy spectra (top panels), pitch angle profiles (middle panels) and L-shell profiles (bottom panels)
between August 2018 and December 2020, compared with predictions from AP9 model at 95% C.L.
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Low-energy protons are present in almost the whole SAA (B < 20500 nT, L-shell
< 1.3 Rg), while the high-energy ones are concentrated in the innermost area
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Geographical maps of omnidirectional proton fluxes (August 2018-December 2020) as a function of latitude and
longitude for a low-energy bin (40-45 MeV, left panel) and for a higher one (200-230 MeV, right panel)




was rather quiet and after 2017 no major SEP events occurred

As the maximum of solar activity cycle approaches, the number of
SEPs will increase for sure and it will be possible to carry out our
original purpose of SEP-classification starting from their spectral
index, duration, energy extension, origin point in the solar disk, etc.

Even without SEP events, we have been able to assess the
capability of HEPD-01 during transient phenomena like the
geomagnetic storms of August 25™" 2018 and May 12th 2021

A geomagnetic storm is a temporary disturbance of the Earth's
magnetosphere, caused by coronal mass ejections (CMEs), solar flares,
co-rotating interaction regions (CIRs), etc.

More (and more powerful) geomagnetic storms will be studied in the
next future



An increase in HEPD-01 count rate was observed at both northern
and southern latitudes, especially in the southern region, as a
consequence of the storm’s arrival
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Left: HEPD-01 trigger rate map before the impact of the storm (20‘4‘—23""I August)
Right: HEPD-01 trigger rate map after the impact of the storm (25"‘—27"" August)

Both maps are related to the trigger configuration providing the lowest
energy threshold for electron detection (> 3 MeV)




A clear enhancement of HEPD-01 trigger rate \? ‘(
during the storm’s recovery phase was observed at L-shells > 3,

thus suggesting a phenomenon of acceleration of energetic electrons
Electron energy > 3 MeV.
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Top three panels: Trigger rates for three different HEPD-01 configurations over the period August-September 2018
Bottom panel: Time evolution of the Disturbance storm-time index



May 12th storm: this is consistent with the absence of prolonged
substorm activity during recovery, which hampers wave-induced post-storm
acceleration of “seed” populations to MeV energies and consequent
replenishment of depleted regions

Electrons (< 5 MeV)

6 IE||

| |I|||'.' ‘||{ I

L shell (Earth radii)

IS

2
30/04 02/05 04/05 06/05 08/05 10/05 12/05 14/05 16/05 18/05 20/05 22/05 24/05 26/05 29/05 31/05
Time (day/month)



Scaled Counts/'s

A Forbush decrease is a rapid and temporary decrease e
in the observed GCR intensity following a coronal mass ejection.
For the August 2018 geomagnetic storm, we detected
a Forbush decrease (also registered by several neutron monitors)
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We observed the following Forbush decreases for the April 20t" 2020 and
May 12th 2021 geomagnetic storms, respectively:
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The CSES-Limadou mission can be considered as an extension of PAMELA
(2006-2016) and AMS-02 in the study of low-energy cosmic rays and
trapped particles in the radiation belts:

® We obtained the first results on galactic hydrogen in the 40-250
MeV range, at 1 au, since a series of balloon flights in 1960s/1970s

® \We obtained the first results on SAA protons below 250 MeV at
Low Earth Orbit during the minimum activity phase between the 24t
and the 25" solar cycles

® Analyses on cosmic and re-entrant lepton spectra are ongoing

Considering the sky-rocketing focus on space weather research in this
last decade, HEPD-01's results prove promising, especially in view of
the already-planned constellation of CSES satellites in the next few years.
CSES-02 is currently under construction and is expected to offer
further insight into low-energy physics and space weather studies
throughout the 25t solar cycle.
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