

Polarised Study of Diboson Production at NNLO

Andrei Popescu in collaboration with Rene Poncelet based on [Poncelet, AP 2102.13583]

popescu@hep.phy.cam.ac.uk

Cavendish Laboratory, University of Cambridge

XII Lomonosov Conference

https://lomcon.ru Moscow State University

Tuesday 24th August, 2021

Outline of the talk

1. QCD Precision Studies

Cross section at hadron collider

2. Process

Motivation

Aspects of diboson production

Double-pole approximation

3. Calculation

Setup

NNLO corrections

Loop-induced channel corrections

Polarisation fractions

4. Conclusions

Future plans

QCD Precision Studies

Master formula for collinear factorisation:

Figure 1: Parton model description of a hard scattering process (Ellis, Stirling, Webber).

$$\hat{\sigma}_{ij} = \hat{\sigma}_{ij}^{(0)} + \hat{\sigma}_{ij}^{(1)} + \hat{\sigma}_{ij}^{(2)} + \dots$$

The difficulty comes not from UV but IR divergencies.

Example with quark production (final state radiation):

Kinoshita-Lee-Neuberger theorem

Regularised virtual poles cancel against real radiation singularities upon inclusive integration of the emission phase space.

Perturbative expansion for σ_{ab} :

$$\begin{split} \hat{\sigma}_{ab}^{(0)} &\sim \int d\Phi_n \left\langle M_n^{(0)} \middle| M_n^{(0)} \right\rangle F_n \qquad \hat{\sigma}_{ab}^{(1)} \sim \int d\Phi_{n+1} \left\langle M_{n+1}^{(0)} \middle| M_{n+1}^{(0)} \right\rangle F_{n+1} + 2 \int d\Phi_n \operatorname{Re} \left\langle M_n^{(0)} \middle| M_n^{(1)} \right\rangle F_n \\ \hat{\sigma}_{ab}^{(2)} &\sim \int d\Phi_{n+2} \left\langle M_{n+2}^{(0)} \middle| M_{n+2}^{(0)} \right\rangle F_{n+2} + 2 \int d\Phi_n \operatorname{Re} \left\langle M_n^{(0)} \middle| M_{n+1}^{(2)} \right\rangle F_n + \int d\Phi_{n+1} \left\langle M_{n+1}^{(1)} \middle| M_{n+1}^{(1)} \right\rangle F_{n+1} \end{split}$$

Higher-order corrections

Benefits:

• Significant reduction of scale uncertainty (to 1% at NNLO)

Challenges:

- Computational complexity (100-1000x compared to NLO)
- Some schemes tackle only a subset of processes

Fact

It took a long time to establish NNLO precision as standard: 2-loop amplitudes for dijet process were available 20 years before cross-section prediction arrived. Theoretical uncertainty is estimated through "7-point scale variation"

$$\frac{1}{2} < \mu_R, \mu_F < 2.$$

Common differential observables:

- rapidity ($y = \frac{1}{2} \ln \left(\frac{E + p_z}{E p_z} \right)$)
- transverse momentum (p_T)
- invariant masses
- distance between particles $dR = \sqrt{y^2 + \Delta \phi^2}$
- event shapes (thrust, N-jettiness, ...): to describe geometry of a group of particles

Higher-order corrections

Benefits:

• Significant reduction of scale uncertainty (to 1% at NNLO)

Challenges:

- Computational complexity (100-1000x compared to NLO)
- Some schemes tackle only a subset of processes

Fact

It took a long time to establish NNLO precision as standard: 2-loop amplitudes for dijet process were available 20 years before cross-section prediction arrived.

Theoretical uncertainty is estimated through "7-point scale variation"

$$\frac{1}{2} < \mu_R, \mu_F < 2.$$

"Sector-improved residue subtraction scheme"

- Project leader Michal Czakon [1005.0274, 1408.2500]
- **Contributors** Arnd Behring, David Heymes, Alexander Mitov, Andrew Papanastasiou, Mathieu Pellen, Rene Poncelet, A.P.
 - Features ... local numerical cancellation of poles
 - · versatile scheme: any process possible
 - · implemented in C++ library STRIPPER

 - **Processes** $t\bar{t}$ [1901.05407. 2008.11133].
 - · dijet [1907.12911] .
 - · 3-photon [1911.00479].
 - · V+c [2011.01011],
 - · 2-photon+iet [2105.06940].
 - · 3-iet [2106.05331].

Process

Longitudinal polarisation and massiveness of W^{\pm}, Z bosons is the direct consequence of the Electroweak symmetry breaking mechanism in the Standard Model.

<u>Features</u> of $pp \rightarrow W^+ W^- \rightarrow e^+ \nu_e \mu^- \overline{\nu}_{\mu}$:

- Leptonic decay channel is a clean experimental signature
- Largest σ among diboson processes
- Luminosities of Run 2/3 will allow for precise measurement

Relevant theoretical papers:

- Seminal papers on W-boson polarisation [Bern et al. 1103.5445]
 [Stirling et al. 1204.6427]
- Polarised diboson production at NLO QCD [Denner et al. 2006.14867, 2010.07149]
- Double pole approximation (DPA)
 [Billoni et al. 1310.1564]
 [Ballestrero et al. 1710.09339, 1907.04722]
- Off-shell W⁺ W⁻ production up to NNLO QCD + EW NLO [Caola et al. 1511.08617]
 [Grazzini et al. 1605.02716, 1912.00068]
 [Lombardi et al. 2103.12077]

Polarised diboson production: technical aspects

- 1. On-shell amplitudes:
 - → polarisation is defined for on-shell bosons;
 - → non-resonant background effects due to missing SR amplitudes;
 - → accuracy is $\sim O(\Gamma_W/M_W) = 2.5\%$;

Polarised diboson production: technical aspects

- 1. On-shell amplitudes:
 - → polarisation is defined for on-shell bosons;
 - → non-resonant background effects due to missing SR amplitudes;
 - → accuracy is $\sim O(\Gamma_W/M_W) = 2.5\%$;
- 2. Interference between polarisations:
 - \rightarrow caused by **cross terms** $\mathcal{A}^*_{\lambda} \mathcal{A}_{\lambda'}$ (polarisation information lost after leptonic decay);
 - → arises if leptonic phase space integration is restricted (fiducial setup or specific observable);
 - → problematic for experiment (polarisation measurement based on template method).

Polarised diboson production: technical aspects

- 1. On-shell amplitudes:
 - → polarisation is defined for on-shell bosons;
 - → non-resonant background effects due to missing SR amplitudes;
 - → accuracy is $\sim O(\Gamma_W/M_W) = 2.5\%$;
- 2. Interference between polarisations:
 - → caused by **cross terms** $\mathcal{A}^*_{\lambda}\mathcal{A}_{\lambda'}$ (polarisation information lost after leptonic decay);
 - → arises if leptonic phase space integration is restricted (fiducial setup or specific observable);
 - → problematic for experiment (polarisation measurement based on template method).
- 3. Loop-induced channel:
 - → significant effects and **dominating** scale uncertainty at $\mathcal{O}(\alpha_s^2)$.

- A selected on-shell projection defined on-shell sub-amplitudes (we choose to preserve leptonic angles in the decay frames, and boson angles in the diboson frame).
- Cross-term amplitude contributions coming from $A_{\alpha}A_{\tilde{\alpha}}$ terms create **interferences** for cross sections.

Calculation

Process: $pp \rightarrow W^+ W^- \rightarrow e^+ \nu_e \mu^- \overline{\nu}_{\mu}$ @ 13 TeV.

Details: Massive *b*-quarks scheme (*Nf*=4), G_{μ} -scheme, complex-mass scheme.

PDF sets: NNPDF31_[n]nlo_as_0118 (5-flavour).

Scales: fixed central scale $\mu_R = \mu_F = M_W$, 7-point variation scheme with $1/2 \le \mu_R/\mu_F \le 2$.

Cuts: ATLAS-inspired¹ fiducial setup:

$p_{Tmiss}>20{ m GeV}$	to avoid D-Y background
$M_{e^+\mu^-} > 55{ m GeV}$	to avoid Higgs background
perfect b-quark jet veto	to avoid $t\overline{t}$ background
$p_{T,l} > 27 { m GeV}, y_l < 2.5$	detector cuts
jet veto: $\left \eta_{j} ight < 4.5$, $p_{T,j} > 35{ m GeV}$	to reduce QCD corrections

Finally, an **implicit cut** on $M_{W^+,W^-} > 2M_W$ comes from double resonant parts in DPA, NWA.

¹[Aaboud et al. 1902.05759]

Features:

Polarisation interference
 Non-resonant background

Features: Polarisation interference Non-resonant background

(2)

3 "Monte-Carlo true" polarisation distributions

- 1 Polarisation interference
- 2 Non-resonant background
- (3) "Monte-Carlo true" polarisation distributions

Features:

 $\overline{2}$

1

62

- Non-resonant background
- (3) "Monte-Carlo true" polarisation distributions
- 5 Distinct and large K_{NNLO} for $W_L^+ W_L^-$

- 1 Polarisation interference
- 2 Non-resonant background
- (3) "Monte-Carlo true" polarisation distributions
- $\begin{array}{c} \textcircled{4} \\ W_L^+ W_L^- \text{ contribution is small,} \\ W_T^+ W_T^- \text{ dominates} \end{array}$
- 5 Distinct and large K_{NNLO} for $W_L^+ W_L^-$
- 6 small K-factor for other setups

Features:

- 1 Polarisation interference
 - Non-resonant background
- (3) "Monte-Carlo true" polarisation distributions
- $\begin{array}{c} \textcircled{4} \\ W^+_L W^-_L \text{ contribution is small,} \\ W^+_T W^-_T \text{ dominates} \end{array}$
- 5 Distinct and large K_{NNLO} for $W_L^+ W_L^-$
- 6 small K-factor for other setups

Summary:

- → NNLO effects are **2-3%** of σ_{tot} for all setups except $W_L^+ W_L^-$ where it is **9%**.
- → Scale uncertainty is reduced by a factor of 3 w.r.t NLO.

Selected effects

1 Larger corrections for W_T at low energies

Selected effects

- 1 Larger corrections for W_T at low energies
- 2 Distinct rapidity correction profile for $W_L^+ W_L^-$

0 100 200 300

100 200 300

 $p_T(e^+)$

Ó.

100 200 300

NNLO

- NNLO+LI

Ô.

Selected effects

- 1 Larger corrections for W_T at low energies
- 2 Distinct rapidity correction profile for $W_L^+ W_L^-$
- 3 Massive high-energy corrections for longitudinal W, matching bahaviour in $W_L^+ W_L^-$

Selected effects

- 1 Larger corrections for W_T at low energies
- 2 Distinct rapidity correction profile for $W_L^+ W_L^-$
- 3 Massive high-energy corrections for longitudinal W, matching bahaviour in $W_L^+ W_L^-$

Summary:

- → Corrections of 6-9% to σ_{tot} .
- → Overall scale uncertainty increased by a factor of 2.
- → Correction profile does not follow NNLO K-factor.

In our fiducial setup, interferences are small (2 - 3%), allowing for polarisation fraction extraction:

$$f_i = \frac{\sigma_i}{\sigma_{tot}}.$$

- + $W_L^+ W_L^-$ setup is significantly affected by NNLO corrections, others are stable;
- Loop-induced channel affects $W_T^+ W_T^-$ setup the most.

Conclusions

We studied W-boson polarisation in the fully leptonic channel of $pp \to W^+ W^-$ process. Polarisations were separated on the amplitude level in the framework of DPA.

- NNLO corrections bring scale uncertainty down to 1% and are well-behaved.
- QCD corrections are polarisation dependent and are particularly strong for the doubly-longitudinal setup.
- Loop-induced channel has a 6 9% effect on the results and increases scale uncertainty by a factor of 2.

Future plans:

- Calculate NLO corrections to LI channel in diboson production.
- Study polarised W + j process at NNLO.

From polarised study of W + j at NNLO [in preparation]

Future plans:

- Calculate NLO corrections to LI channel in diboson production.
- Study polarised W + j process at NNLO.

From polarised study of W + j at NNLO [in preparation]

Backup

- STRIPPER: general purpose framework for fixed-order calculations up to NNLO QCD. [Czakon et al. 1907.12911, 1408.2500]
- AvH: tree-level amplitudes.
 [Bury, van Hameren 1503.08612]
- OPENLOOPS: 1-loop amplitudes (privately modified for polarised study). [Buccioni et al. 1907.13071, 1710.11452] [Cascioli et al. 1111.5206]
- RECOLA: checks in 1-loop amplitudes (private version used by authors of the NLO study). [Actis et al. 1211.6316, 1605.01090]
- ◊ VVAMP: 2-loop amplitudes for q q channel. [Gehrmann et al. 1503.04812]
- LHAPDF: particle distribution functions framework. [Buckley et al. 1412.7420]

Brief look at competing schemes:

- Slicing method:
 - resummation formulae are used to approximate divergent phase-space regions within a small cutoff;
 - q_T subtraction (MATRIX code) and N-jettiness use corresponding observables as cut-off variables;
 - · used for diboson and boson+jet production;
- Subtraction method:
 - Fully differential subtraction with numerically integrated subtraction terms;
 - Antenna subtraction first used as NLO scheme, promoted to NNLO;
 - CoLoRFulNNLO developed for colourless initial states;
 - Local analytic sector subtraction with analytic counterterms;
 - used for e.g. 2-jet, V+j, $t\overline{t}\text{, }e^+e^- \rightarrow 3\text{j}.$

"Sector-improved residue subtraction scheme"

- Project leader Michal Czakon [1005.0274, 1408.2500]
 - Contributors Arnd Behring, David Heymes, Alexander Mitov, Andrew Papanastasiou, Mathieu Pellen, Rene Poncelet, A.P.
 - Features · local numerical cancellation of poles · versatile scheme: any process possible · implemented in C++ library STRIPPER
 - **Processes** $\cdot t\bar{t}$ [1901.05407, 2008.11133],
 - · dijet [1907.12911],
 - · 3-photon [1911.00479],
 - · V+c [2011.01011],
 - · 2-photon+jet [2105.06940],
 - · 3-jet [2106.05331].

 \mathbb{P}_{μ}

Double pole approximation:

$$\begin{split} \mathcal{A}_{\lambda} &= \mathcal{P}_{\mu} \frac{\varepsilon_{\lambda}^{\mu} \varepsilon_{\lambda}^{\nu*}}{k^2 - M_V^2 + i M_V \Gamma_V} \mathcal{D}_{\nu} \\ \mathcal{M} &= \sum_{\lambda} |A_{\lambda}|^2 + \sum_{\lambda \neq \lambda'} A_{\lambda}^* A_{\lambda'} \end{split}$$

Polarisation only defined for physical vectors (present physical vectors), so define on-shell projection (OSP) for kinematics and evaluate \mathcal{P}, \mathcal{D} at this point. Narrow width approximation:

$$\mathcal{M}_{\mathrm{pp}\to\mathrm{e}^+\nu\mathrm{e}\mu^-\bar\nu\mu}\sim\sum_{h,h'\in\Lambda}\mathcal{M}_{\mathrm{pp}\to\mathrm{W}^+\mathrm{W}^-}^{h,h'}\Gamma^h_{\mathrm{W}^+\to\mathrm{e}^+\nu\mathrm{e}}\Gamma^{h'}_{\mathrm{W}^-\to\mu^-\bar\nu\mu}.$$

Precision of a method that uses on-shell amplitudes is of $\mathcal{O}(\Gamma_W/M_W)$ for inclusive computation.

Beware of interference terms in the unpolarised case:

$$\left|M\right|^{2} = \sum_{\lambda} \left|M_{\lambda}\right|^{2} + \sum_{\lambda \neq \lambda'} M_{\lambda}^{*} M_{\lambda'}$$

Analytic result for polarised massive vector boson decay in its CM frame:

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta^* d \phi^*} = \frac{3}{16\pi} \Big[(1 + \cos^2 \theta^*) + A_0 \frac{1}{2} (1 - 3\cos^2 \theta) + A_1 \sin(2\theta^*) \cos \phi^* + A_2 \frac{1}{2} \sin^2 \theta^* \cos(2\phi^*) \\ + A_3 \sin \theta^* \cos \phi^* + A_4 \cos \theta^* + A_5 \sin^2 \theta^* \sin(2\phi^*) + A_6 \sin(2\theta^*) \sin \phi^* + A_7 \sin \theta^* \sin \phi^* \Big]$$

(coefficients depend on the choice of a coordinate system, e.g "helicity", "Collins-Soper", etc) In case of inclusive phase space azimuthal angle can be integrated out:

$$\frac{1}{\sigma} \frac{d\sigma}{d(\cos \theta^*)} = \frac{3}{8} (1 \mp \cos \theta^*)^2 f_- + \frac{3}{8} (1 \pm \cos \theta^*)^2 f_+ + \frac{3}{4} \sin^2 \theta^* f_L$$

where

$$f_{\pm} = \frac{1}{4}(2 - A_0 \pm A_4), \qquad f_0 = \frac{1}{2}A_0.$$

or through angular measurements:

$$f_{\pm} = -\frac{1}{2} \pm \langle \cos \theta^* \rangle + \frac{5}{2} \langle \cos^2 \theta^* \rangle, \qquad f_0 = 2 - 5 \langle \cos^2 \theta^* \rangle.$$

	$\frac{\sigma_{NLO}}{\sigma_{LO}}$	$\frac{\sigma_{NNLO}}{\sigma_{NLO}}$	NNLO+LI [fb]	$\frac{\sigma_{NNLO+LI}}{\sigma_{NLO}}$
unpol. (dpa)	1.095	1.023	$232.7(4)^{+1.4\%}_{-1.1\%}$	1.061
unpol. (nwa)	1.097	1.025	$241.0(6)^{+1.5\%}_{-1.1\%}$	1.060

DPA vs NWA: positron emission angle

	$rac{\sigma_{NLO}}{\sigma_{LO}}$	$\frac{\sigma_{NNLO}}{\sigma_{NLO}}$	NNLO+LI [fb]	$\frac{\sigma_{NNLO+LI}}{\sigma_{NLO}}$
unpol. (dpa)	1.095	1.023	$232.7(4)^{+1.4\%}_{-1.1\%}$	1.061
unpol. (nwa)	1.097	1.025	$241.0(6)^{+1.5\%}_{-1.1\%}$	1.060

Features:

• Close K-factors for all QCD corrections.

DPA vs NWA: positron emission angle

	$rac{\sigma_{NLO}}{\sigma_{LO}}$	$\frac{\sigma_{NNLO}}{\sigma_{NLO}}$	NNLO+LI [fb]	$\frac{\sigma_{NNLO+LI}}{\sigma_{NLO}}$
unpol. (dpa)	1.095	1.023	$232.7(4)^{+1.4\%}_{-1.1\%}$	1.061
unpol. (nwa)	1.097	1.025	$241.0(6)^{+1.5\%}_{-1.1\%}$	1.060

- Close K-factors for all QCD corrections.
- Matching description of normalised bulk-defined distributions between DPA & NWA.

DPA vs NWA: leading lepton transverse momentum

	$\frac{\sigma_{NLO}}{\sigma_{LO}}$	$\frac{\sigma_{NNLO}}{\sigma_{NLO}}$	NNLO+LI [fb]	$\frac{\sigma_{NNLO+LI}}{\sigma_{NLO}}$
unpol. (dpa)	1.095	1.023	$232.7(4)^{+1.4\%}_{-1.1\%}$	1.061
unpol. (nwa)	1.097	1.025	$241.0(6)^{+1.5\%}_{-1.1\%}$	1.060

- Close K-factors for all QCD corrections.
- Matching description of normalised bulk-defined distributions between DPA & NWA.
- Differences come from the bulk region.

DPA vs NWA: azimuthal angle between leptons

	$\frac{\sigma_{NLO}}{\sigma_{LO}}$	$\frac{\sigma_{NNLO}}{\sigma_{NLO}}$	NNLO+LI [fb]	$\frac{\sigma_{NNLO+LI}}{\sigma_{NLO}}$
unpol. (dpa)	1.095	1.023	$232.7(4)^{+1.4\%}_{-1.1\%}$	1.061
unpol. (nwa)	1.097	1.025	$241.0(6)^{+1.5\%}_{-1.1\%}$	1.060

- Close K-factors for all QCD corrections.
- Matching description of normalised bulk-defined distributions between DPA & NWA.
- Differences come from the bulk region.
- Interesting interplay in azimuthal angle.

	$\frac{\sigma_{NLO}}{\sigma_{LO}}$	$\frac{\sigma_{NNLO}}{\sigma_{NLO}}$	NNLO+LI [fb]	$\frac{\sigma_{NNLO+LI}}{\sigma_{NLO}}$
unpol. (dpa)	1.095	1.023	$232.7(4)^{+1.4\%}_{-1.1\%}$	1.061
unpol. (nwa)	1.097	1.025	$241.0(6)^{+1.5\%}_{-1.1\%}$	1.060

- Close K-factors for all QCD corrections.
- Matching description of normalised bulk-defined distributions between DPA & NWA.
- Differences come from the bulk region.
- Interesting interplay in azimuthal angle.
- ⇒ Overall **good description** of differential distributions **by NWA**.

Top-quark loop contribution in LI channel: off-shell setup

- Main effect in the tail:
 - \rightarrow value increase by up to 8%
 - ightarrow scale variation band increased by 30%
- Effect on total cross section:
 - ightarrow cross section increased by 0.6%
 - \rightarrow scale uncertainty increased by 7%

Top-quark loop contribution in LI channel: bulk observable

No significant effect on bulk observables from top-quark loop.

Effects of the PDF set

Figure 5: Comparison between calculations with nf = 4 and nf = 5 PDF sets. Uncertainty bands correspond to **factorisation** scale uncertainty.

- the discrepancy falls withing this band at NLO;
- total cross-section effect: < 0.6% (largest for LL).

Distribution poorly suited for polarisation study

Single resonant contributions are dominating at high $p_{T,miss}$.

Figure 6: Dominating single resonant contribution at high p_T [Biedermann et al. 1605.03419]

Extra figures: M_{e^+,μ^-}

Extra figures: $\cos \theta_{e^+,\mu^-}$

Extra figures: y_e^+

Extra figures: e^+ vs μ^-

Positron transverse momentum

 $\log_{10} \left| \frac{\sigma_{p_T}(\mathbf{e}^+) - \sigma_{p_T}(\mu)}{\sigma_{p_T}(\mathbf{e}^+) + \sigma_{p_T}(\mu)} \right|$

1.00

Extra figures: $\phi_{e^+,\mu}^-$

LI channel has large overall shift in TT and unpolarised setups. Interesting shape in LL setup.

Effects of LI channel: positron transverse momentum

- Sizeable increase of scale uncertainty in the tail, particularly in longitudinal setups
- Corrections are polarisation-dependent:
 - ightarrow in the bulk for transverse setups
 - $\rightarrow\,$ in the tail for longitudinal setups
 - ightarrow in both places for LL setup