Dark Matter searches with the ATLAS Detector

Lomonosov 2021

Zirui Wang on behalf of the ATLAS collaboration

24 August. 2021

Introduction

- Empirical evidence of DM from astrophysical observations at different scales
 - Most of the matter content of the universe is transparent
 - Appealing scenario: DM is a Weakly Interacting Massive Particle

Outline

- Overview of Dark Matter models
- Recent Dark Matter searches *
 - Jet + MET
 - H(bb) + MET
 - H(γγ) + MET
 - Z(II) + MET
 - tW/tj + MET
- Combinations of Dark Matter searches
 - s-channel mediator
 - 2HDM + a
 - Higgs portal

*Caveat: Only a small selection of full Run 2 analyses presented today

For DM searches, theoretical benchmarks are necessary to sharpen the regions of interest

- To **optimize searches** and characterize a possible discovery
- Define a theoretical framework for **comparison with non-collider results**

Simplified s-channel mediator model Small set of free parameters. Interesting interplays between Mono-X searches and resonance searches.

Higgs portal models Search for enhancement of invisibly decays which increase BR(H→inv) (~0.1% in SM).

2HDM+a

Two-Higgs doublet extensions with a pseudoscalar a. Gauge-invariant. Richer kinematics + phenomenology

SUSY Simplified R-parity conserving model

2HDM+Z' Two-Higgs doublet extensions with a vector Z'

Outline

- Overview of Dark Matter models
- Recent Dark Matter searches
 - Jet + MET
 - H(bb) + MET
 - H(γγ) + MET
 - Z(II) + MET
 - tW/tj + MET
- Combinations of Dark Matter searches
 - s-channel mediator
 - 2HDM + a
 - Higgs portal

Jet + MET

- Selection: MET> 200 GeV, ΔΦ(jet, MET) cut to reduce the multijet contribution.
- Dedicated control regions (CRs) to estimate
 V+jets, ttbar and single-top processes.
- **Results:** simultaneous fit to the p_T^{recoil} (hard component of MET) distributions in SR and CRs.
 - Uncertainties reduced to a few percent level in each bin for SM predictions.

Mono-H(bb)

- Associated production of Dark Matter and a Higgs boson ⇒Larger production rate than ISRbased production mode.
- Both resolved and merged topologies with different $H \rightarrow bb$ reconstructions employed.
- **Results:** simultaneous fit to the Higgs mass distributions in SR and CRs.

ATLAS-CONF-2021-006

Mono-H($\gamma\gamma$)

- Comparing to mono-H(bb), triggered using the photon pair, allowing for much lower and better resolved MET in the event.
- S+B fits performed in analysis categories simultaneously.

arXiv:2104.13240

2HDM+Z', mZ' vs mA scan

Mono-Z(II)

ATLAS-CONF-2021-029

- Select events with a **leptonically-decaying Z against** significant MET.
- **Results:** simultaneous fit in SR and CRs.
- Observed BR(H→inv) < 0.18 @ 95% C.L.

*m*_a [GeV]

tW/tj + MET

• Search for dark matter in the context of **2HDM+a**

arXiv:2011.09308

2HDM+a, ma vs mH± scan

Outline

- Overview of Dark Matter models
- Recent Dark Matter searches
 - Jet + MET
 - H(bb) + MET
 - H(γγ) + MET
 - Z(II) + MET
 - tW/tj + MET
- Combinations of Dark Matter searches
 - s-channel mediators
 - 2HDM + a
 - Higgs portal

S-channel – spin 1 mediators

Lomonosov2021 - Zirui Wang 12

m_{z'} [TeV]

- Searches use simplified models with a spin-1 particle as the mediator
 - Vector and axial vector mediator
- Resonance searches and MonoX searches with sensitivities varied as a function of different coupling values of the model.

Simplified vector model

Simplified axial-vector model

- Analyses dominating the sensitivity are:
 - MET signatures: Mono-jet and mono-photon
 - Non-MET signatures: High-mass di(b)-jet resonances, TLA di-jet, Dijet+ISR (boosted and resolved), Dilepton resonances
 ATL-PHYS-PUB-2021-006

Compare to direct detection

ATL-PHYS-PUB-2021-006

Results translated into spin-dependent and spin-independent DM-nucleon elastic scattering cross-section limits ⇒ compared to direct searches

10⁻³⁷ 10⁻³⁷ σ_{SD} (χ -neutron) [cm²] σ_{SI} (χ-nucleon) [cm²] Dijet Dijet **TLAS** Preliminarv Dijet; JHEP 03 (2020) 145 Dijet: JHEP 03 (2020) 145 10^{-38} 10^{-38} Dijet TLA; PRL 121 (2018) 081801 Dijet TLA; PRL 121 (2018) 081801 13 TeV, March 202 = 13 TeV, March 2021 Dijet+ISB: PI B 795 (2019) 56 Dijet+ISB: PI B 795 (2019) 56 10⁻³⁹ Boosted dijet+ISB: PLB 788 (2019) 316 Boosted dijet+ISB: PLB 788 (2019) 316 10⁻³⁹ tt resonance Boosted di-b+ISR: ATLAS-CONF-2018-05 ENON1T MIGD 10^{-40} 🗕 tī resonance E^{miss}+X - tt resonance EPJC 78 (2018) 565 EPJC 78 (2018) 565 10^{-40} 10^{-4} bb resonance bb resonance JHEP 03 (2020) 145 JHEP 03 (2020) 145 bb resonance 10^{-4} 10^{-42} E^{miss}+X E^{miss}+X DarkSide-50 Dijet +jet; arXiv:2102.10874 E^{miss}+jet; arXiv:2102.10874 tt resonance 10^{-43} +γ: arXiv:2011.05259 10⁻⁴² E^{miss}+y: arXiv:2011.05259 E^{miss}+V(had); JHEP 10 (2018) 180 E^{miss}+V(had); JHEP 10 (2018) 180 E^{miss}+Z(II); PLB 776 (2017) 318 E_T^{miss}+Z(II); PLB 776 (2017) 318 bb resonance 10⁻⁴⁴ 10^{-43} XENON1T XENON1T PRL 122 (2019) 141301 10^{-45} PRL 121 (2018) 111302 Dijet 10^{-44} LUX PandaX KENON1T PRL 117 (2016) 121303 PRL 118 (2017) 251302 10^{-46} DarkSide-50 10⁻⁴⁵ Axial-vector mediator, Dirac DM Vector mediator, Dirac DM 10⁻⁴⁷ PRL 121 (2018) 081307 $g_{x} = 0.25, g_{y} = 0, g_{y} = 1$ $g_{1} = 0.25, g_{1} = 0, g_{2} = 1$ XENON1T MIGD 95% CL, direct detection limits at 90% CL direct detection limits at 90% CI 10^{-46} 10^{-48} PRL 123 (2019) 241803 10^{3} 10^{3} 10^{2} 10^{2} 10 10 m_v [GeV] m_γ [GeV] Axial-vector mediator leads Vector mediator leads to a to a SD interaction SI interaction

- ATLAS results are particularly competitive for low DM masses.
- Translation is **model-dependent**. LHC limits hold exclusively for considered models.

s-channel – spin 0 mediators

- Searches with scalar (φ) and pseudoscalar (a) as the mediator
 - Dark Matter production via (pseudo)scalar mediator in association with HF
 - Mediator decays into two dark matter particles X, with MET signature.

ATLAS Preliminary

Pseudoscalar a, $a \rightarrow \chi \overline{\chi}$

Dirac DM, m = 1 GeV

200

All limits at 95% CL

 $g_{\alpha} = g_{\gamma} = 1$

March 2021

300 400

- Dominated by t/tt/bb+MET analyses, mono-Jet, and tt resonances.
- The strongest limits are placed by <u>tt+MET 2L</u> final state.

√s=13 TeV, 36.1-139 fb⁻¹

Expected

Observed

20

bb+a 0L, 139 fb⁻¹ [arXiv:2101.12527]

tt+a 0L, 36.1 fb-1 [EPJC 78 (2018) 18]

tt+a 1L_139 fb⁻¹[arXiv:2012.03799]

tt+a 2L, 139 fb⁻¹[arXiv:2102.01444]

I+a monolet, 139 to larxiv:2

30

40

50 60

 σ/σ_{theory}

1000

100

10

0.1

10

100

ATL-PHYS-PUB-2021-006

Simplified scalar model

Combination of 2HDM+a

- Most sensitive searches updated to full Run 2 luminosity
- Statistical combination of MET+h(bb) and MET+Z(II) analyses, which improves the sensitivity.
- Significant complementarity from different channels.

ATLAS-CONF-2021-036

ma vs mA scan

mA vs tanβ scan

Combination of 2HDM+a

- Most sensitive searches updated to full Run 2 luminosity
- Statistical combination of MET+h(bb) and MET+Z(II) analyses, which improves the sensitivity.
- Significant complementarity from different channels.

ATLAS-CONF-2021-036

Sin θ scan

mχ scan

$Higgs \rightarrow invisible \ combination$

 Combining direct measurements to probe with higher sensitivity ⇒
 Statistically combining VBF+MET, tt+MET (tt2L + tt0L), and Run1 combination results g t

- Observed BR(H→inv) < 0.11 @ 95% C.L. (~0.1% in SM).
- Assuming DM particles are either scalar or Majorana fermions ⇒ Translate results into a DM-nucleon elastic scattering cross-section limit.
- Significant complementarity between LHC and direct detection experiments
- A preliminary combination ⇒ More results such as Z(II)+MET, VBF+γ+MET to be added to the final Run 2 combination.

ATLAS-CONF-2020-052

- A large number of searches for DM candidates has been performed by ATLAS.
 Selected full Run 2 searches and combination analyses presented.
 - Interpretation in view of many different DM models.
 - Complementarity from **different signatures** reached.
 - Complementarity with **non-collider searches** observed.
- There are still many more ATLAS full Run 2 results to be expected. Stay tuned for updates!

ATLAS Run 2 dataset

- Solenoid Magnet: 2T
- Toroid Magnets: 0.5-1T

Large dataset collected by ATLAS in Run 2 (2015-2018) with 139 fb^{-1} integrated luminosity <u>ATLAS public results</u> • Inner detector ($|\eta| < 2.5$): Precise tracking and vertexing, e/π separation.

- EM calorimeter (|η|<3.2):
 e/γ trigger, identification and measurement.
- Hadronic calorimeter ($|\eta| < 4.9$): Trigger and measurement of jets and E_T^{miss} .
- Muon Spectrometer (|η|<2.7):
 Muon trigger and tracking.

tt+MET 2L SR distributions

bb+MET SR distributions

- Trigger selection: diphoton trigger with p_T thresholds of 35 and 25 GeV
- *p*_T / *m*_{γγ} > 0.35 and 0.25 for leading and subleading photon
- Lepton veto
- *MET* > 90 GeV
- $m_{\gamma\gamma} \in$ (105,160) GeV
- $\Delta MET < 30 \text{ GeV}$ (MET_{diphoton} - MET_{hardestVertex})

