

Dark matter searches at CMS

Maria Savina, JINR, Dubna

on behalf of the CMS Collaboration

Maria.Savina@cern.ch

Dark matter approaches: from EFT to complete models

CMS

Simplified DM models – main requirements:

- 1. Minimal set of DM fields, s- and t-channel mediated models
- 2. Minimal set of physically relevant parameters (couplings, masses and widths)
- 3. Minimal flavor violation (MVF): new interactions are invariant under global flavor symmetry group
- or all violating transitions are governed by the CKM matrix (SM FCNC structure, also CPV)

DM mediator(s): spin-0, 1/2, 1

- 1. The (axial)vector Z', spin-1
- 2. The (pseudo)scalar, spin-o Higgs portals (special importance of Higgs connected studies).
- 3. Fermionic portals, spin-1/2 SUSY, dark SUSY... (often flavour violation)
- 4. Double (scalar-vector) portals

DM particle(s): spin-0, ½, 1 (and even spin-2 for Kaluza-Klein DM in TeV-scale gravity models) Spin-1/2 DM: for fermion case only one DM particle → nonperturbative description for the scalar mediator (see f. e. *arXiv:1903.03616*) → need to extend fermion sector

- ✓ Isodoublet-isosinglet model (faces difficulties in imposing collider and astrophysical constraints for minimal mediator models, higgs portals)
- ✓ New vector-like fermion family (VLL, VLQ, VLF in general) Spin-o DM: inert higgs doublet

Spin-0 DM: mert mggs dou Spin-1 DM: dark photon

M. Savina, JINR, Russia

arXiv:1507.00966 arXiv:1603.04156 arXiv:1506.03116

The simplest s-channel DM

One DM particle, one mediator, plus the SM content. Visible and invisible (MET) FS

A cross section as a function of 5 only model parameters: m_{med}, g_q, g_l, m_{DM}, g_{DM}

The invisible signature: DM mediator $\rightarrow \chi \bar{\chi} \rightarrow \text{Mono X} + \text{MET}$; Mono X = ISR Jet/W(Z)/ $\gamma/h_{125}/t/t\bar{t}$

spin-

spin-0

M. Savina, JINR, Russia

The 20th Lomonosov Conference

Leptophilic mediator $g_l \neq 0$: dileptons and dijets (combined)

CMS EXO summary plots

M. Savina, JINR, Russia

24.08.2021

Collider and DD constraints on DM: CMS Mono Jet/V+ MET, V/AV mediator

Comparison of the inferred limits with the constraints from direct-detection experiments on spin-independent (the V mediator) and spin-dependent (the AV mediator) WIMP-nucleon scattering cross-section

Collider and DD constraints on DM: CMS Mono Jet/V+ MET, V/AV mediator

From the simplest s-channel DM to Simplified Dark matter Model (SDM)

SDM models and signatures

Generalized or model specific search, combinations of visible and MET signatures

The (axial)vector mediator

V(ector)/A(xial)V(ect or)	dijet (dilepton), diboson hW/Z pair, $t\overline{t}$ resonance
V(m ector)F(m lavour)C(m changing)	$t+E_T^{miss}$, same-sign tt
V(m ector)B(m aryon-number) $C(m harged)$	$h(b\overline{b}/\gamma\gamma/\tau\tau) + E_T^{miss}$
$2\text{HDM} + Z'_V$ (vector 2HDM based)	$h(b\overline{b}/\gamma\gamma/\tau\tau) + E_T^{miss}$, diboson $W/Z/h$ pairs, $t\overline{t}$ resonance
Dark higgs Z'_V +s	$s(b\overline{b}) + E_T^{miss}$

The (pseudo)scalar mediator

S(calar)/PS(eudoscalar)	$jet/V/h+E_T^{miss}, t\overline{t}(b\overline{b}) \text{ resonance}, \\ t\overline{t}(b\overline{b})+E_T^{miss}, h \rightarrow inv, X \rightarrow hh$
$S(calar)C(olor)C(harged)_b$	$b(b\overline{b}) + E_T^{miss}$
SCCt	$t(t\overline{t}) + E_T^{miss}$
2HDM+a (pseudoscalar 2HDM based)	$\begin{array}{l} h+E_T^{miss}, Z(ll)/V(qq')/Z(q\overline{q})+E_T^{miss}, \\ h \rightarrow inv, X \rightarrow hh, \text{ diboson } Zh(+b\overline{b}), \\ t\overline{t}(b\overline{b}) \text{ resonance}, t\overline{t}(b\overline{b})+E_T^{miss}, t\overline{t}t\overline{t} \end{array}$

A key: separation/reinterpretation and a wide complementary search with all available signatures

M. Savina, JINR, Russia

The 20th Lomonosov Conference

Mono h($b\overline{b}$) + E_T^{miss} , SDM $\overline{Z'_V}$ interpretations

EPJC 79 (2019) 280

Decay $h \rightarrow bb$, new vector/pseudoscalar in invisible mode

 Z_{h} ': Vector Baryon-number-Charged mediator (VBC) Free parameters of the SDM used in the analyses: m_A , m_H , $m_{Z'}$, m_{χ} , coupling Z'_V to SM matter $g_{Z'}$ (=0.25), coupling to DM g_{γ} (=1.0)

2HDM+ Z'_V : m_A, m_H, $m_{Z'}$, m_{χ} (=100 GeV), coupling Z'_V to SM matter $g_{Z'}$ (=0.8), coupling to DM g_{χ} (=1.0), $tan\beta$ =1

CMS DM + h(bb)

--- DD experiments

CDEX-10

200 100

1000 2000

 m_{γ} (GeV)

11/34

M. Savina, JINR, Russia

The 20th Lomonosov Conference

Mono h($b\overline{b}$) + E_T^{miss} , SDM 2HDM+a interpretations

See also JHEP 03 (2020) 25 for combined $h \rightarrow b\overline{b} /WW/ZZ/\gamma\gamma/\tau\tau$

Decay $h \rightarrow b\overline{b}$, new pseudoscalar in invisible mode

EPJC 79 (2019) 280

Free parameters of a simplified description used in an analyses: m_A , m_H , m_S , mixing angle between a and A *sinθ*, VEV ratio for two higgs doublets *tanβ*, couplings to SM and DM particles

M. Savina, JINR, Russia

The 20th Lomonosov Conference

24.08.2021

Mono $Z(ll) + E_T^{miss}$, different SDM interpretations

M. Savina, JINR, Russia

The 20th Lomonosov Conference

Dark Higgs model, resolved decay of $s(W^+W^-) + E_T^{miss}$

- ✓ "Double portal": both "dark higgs" s and massive Z'_V coupled to SM.
- ✓ A new higgs state is weakly mixed with SM h, a new U(1)' → SSB(s) → massive Z'_V coupled to quarks only ✓ s → W⁺W⁻ decay dominates at large s mass values

Model parameters : m_s , $m_{Z'}$, m_{χ} , g_q , g_{χ} , $sin\theta$ (*h*-*s* mixing)

M. Savina, JINR, Russia

 $m_{\mathrm{T}}^{\ell\min,p_{\mathrm{T}}^{\min}}$

The 20th Lomonosov Conference

24.08.2021

Dark sector, how might it look?

DARK

MATTER

26%

5%

NORMAL MATTER

DS might be extended and rich

 ✓ new symmetries (new "dark" QCD, EW, SUSY...)

M. Savina, JINR, Russia

DARK ENERGY

69%

The 20th Lomonosov Conference

24.08.2021

Dark sector with Long-Lived Particles at the LHC

LLP:

a proper lifetime $c\tau_o$ is greater than or comparable to the characteristic size of the (sub)detectors

✓ small $c\tau_0$ that comparable to the inner tracker size, no displaced tracks → "standard" prompt decay

✓ intermediate $c\tau_o$ → LLP

✓ very large/infinite large $c\tau_0$ → stable particles, "standard" MET signatures

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider, arXiv:1903.04497 LLP White Paper: arXiv:1903.04497

LLP theory motivations: arXiv:1806.07396

displaced jets

16/34

M. Savina, JINR, Russia

The 20th Lomonosov Conference

Dark photon from dark SUSY, displaced LJ

Phys. Lett. B 796 (2019) 131 13 TeV, 35.9 fb⁻¹

SUSY portal h - Higgs boson (visible) $n_1 - neutralino,$ $n_D - dark neutralino$ $\gamma_D \rightarrow \gamma \text{ conversion, } \epsilon$

Upper limits set on product of H production cross section and BR of Higgs boson (cascade) decay to a pair of dark photons:

 $\sigma(pp \to h \to 2n_1 \to 2\gamma_D + 2n_D) \times B(\gamma_D \to 2\mu)$

Interpreted in terms of limits on the kinetic mixing parameter, ϵ , and $m_{A'}$.

Limits are shown for $B(h \rightarrow 2\gamma_D + X)$ in the range 0.1–40%.

See also full RUN 2 statistics of 137 fb⁻¹ analyses for γ_D in VBF and ZH associated prod. and for the light narrow vector resonance $Z_D \rightarrow \mu\mu$ in Backup slides

Higgs decay to dark photons: displaced muon jets

- ✓ One of the most striking DM-targeted signatures (dark QCD → dark showers)
- ✓ Tracks start near the edge of the tracker, in the ECAL and HCAL and even in the inner muon stations

M. Savina, JINR, Russia

The 20th Lomonosov Conference

24.08.2021

Summary and outlook on DM searches

- ✓ Wide variety and an extensive list of analyses on DM at CMS, simplified s-channel DM model and slightly beyond it
- Model specific/non-specific signatures, reinterpretation of common to many models, separation through special signatures
- ✓ Still no signals of new DM particles/mediator
- ✓ Further development of an analysis and related theory/simplified model approaches, new interaction channels, new frameworks:
 - ➤ t-channel studies
 - LHC Dark Matter Working Group: Next generation spin-0 dark matter models (in the 2HDM+a framework)

CMS analyses summary on DM search and much more:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

M. Savina, JINR, Russia

The 20th Lomonosov Conference

Thank you for your attention!

M. Savina, JINR, Russia

Backup slides

M. Savina, JINR, Russia

The 20th Lomonosov Conference

Spin of DM mediator: Higgs/gauge (or both) portals to dark matter

Higgs portal: DM interacts with our world only through coupling with the Higgs sector → special importance of Higgs connected studies

Additional higgs bosons needed to accommodate DM \rightarrow an extended Higgs sector. How to extend?

SM style...

- \checkmark SM + one singlet (real/complex) SM + S, the simplest singlet-doublet model (the doublet corresponds to the SM)
- ✓ SM + one doublet (real/complex) 2H(iggs)D(oublet)M(odel), flavor conserving 4 types (type II MSSM), 5 physical states: h, H (CP-even), A (CP-odd), $H^{+/-}$; h–H mixing, "the aligment (decoupling) limit" → $h_{125} = h$
- ✓ SM + doublet + scalar singlet (r/c) 2HDM+S or N(ext/non-minimal)2HDM, flavor conserving 4 types (type II NMSSM), 7 physical states, one is the pseudoscalar → 2HDM+a in the simplified description
- ✓ SM + 2 doublets 3HDM etc.

and non-SM style (SM: isosinglet and isodoublet reps. under SU(2) weak symmetry group). Then how?
✓ isotriplet representations of SU(3) for Higgs fields (Georgi-Machacek model etc.)...

Bright experimental signatures: extra Higgs states, neutral and (doubly)charged, CP-odd and CP-even ones, lighter and heavier than the SM Higgs h_{125}

Also: gauge portal \rightarrow the (axial)vector mediator and double portal \rightarrow both vector + scalar mediators

M. Savina, JINR, Russia

The 20th Lomonosov Conference

The simplest s-channel DM: (axial)vector mediator V/AV

One DM particle (spin-1/2), one mediator + SM, fully visible decay 137 fb⁻¹ (13 TeV) ൭ഁ 0.5 W CMS V/VA $\Gamma_{med} = \frac{3(g'_q)^2 M_{med}}{2\pi}$ $(18g_q^2 + 1)M_{med}$ 95% CL Upper Limits 0.8 Observed 0.3 ga g_{a.l} $\widetilde{Z}'_{\mathrm{V/A}}$ Expected ±1 std. deviation 12π 0.6 0.2 2 std. deviation 0.4 -0.1 mediator on/off-shell production, dijet/dilepton FS 0.2 \checkmark A cross section as a function of the 3 parameters : M_{med} , g_{g} , g_{I} m_{DM} = 1 GeV, g_m = 1 \checkmark m_{DM} = 1 GeV (can differ) M_{Med} [TeV] ✓ limits on g_1 from DY (the V mediator): $g_1 ≤ 0.01$ $N_q(M_{med})$ $= \sum \left(1 - 4 \frac{m_q^2}{M_{med}^2} \right)^{1/2} \left(1 + 2 \frac{m_q^2}{M_{med}^2} \right)$ g_q' = ✓ Universal quark coupling: $g'_q = \frac{g_B}{6}$ $1+1/(3N_q(M_{med})q_q^2)$ M. Savina, JINR, Russia 24.08.2021 The 20th Lomonosov Conference 24/34

<u>JHEP 05 (2020) 033</u>

CMS EXO summary plots

M. Savina, JINR, Russia

The 20th Lomonosov Conference

29.05.2020

S/PS limits combined: $Jet/V(qq)/Z(ll)/t(t\bar{t}) + E_T^{miss}$

Inelastic dark matter at the LHC/LLP

Dark photon, prompt/displaced jets

Not only LLP (1): dark photon in VBF and $Z(ll)H(\gamma\gamma_D)$

Events / GeV

"Standard" (non-LLP) analyses:

- Prompt, <u>resolved</u> decay, γ + MET
 Associated ZH production and partially invisible (semi-invisible) H decay
- ✓ $\mathcal{B}(H \to invisible + \gamma) \leq 5\%$ ✓ in SM $\mathcal{B}(H \to Z\gamma \to \nu\overline{\nu}\gamma) = 3 \times 10^{-4}$
- If SM $B(H \to Z\gamma \to \nu\nu\gamma) = 3 \times 10$
- ✓ Bckgr. from WZ, ZZ, WW, t

M. Savina, JINR, Russia

The 20th Lomonosov Conference

Not only LLP (2): light narrow vector resonance $Z_D \rightarrow \mu\mu$

 $U(1)_D \times U(1)_Y$, mixing in a gauge sector with a parameter ε :

 $\mathcal{L}_{gauge\ mixing} = \frac{\varepsilon}{2} B_{\mu\nu} b^{\mu\nu}$

Search for new light spin-1 resonance Z_D produced on the LHC via mixing with ordinary SM weak bosons.
 Prompt, <u>collimated</u> decay, LJ

Phys. Rev. Lett. 124, 131802 (2020)

M. Savina, JINR, Russia

The 20th Lomonosov Conference

29.05.2020

 ✓ One of the most striking DM-targeted signatures (Dark QCD → dark showers)

 Tracks start near the edge of the tracker, in the ECAL and HCAL and even in the inner muon stations

Emerging jets/dark showers Dark QCD $\mathcal{L} = -\frac{1}{\Lambda} F^a_{\mu\nu} F^{\mu\nu a} + \overline{q}_{\rm d} i \not\!\!D q_{\rm d} - \overline{q}_{\rm d} M_q q_{\rm d}$ *F^a*: dark gluons (*N*_d colours) $q_{\rm d}$: dark quarks ($N_{\rm f}$ flavours) *M_a*: quark mass matrix Dark QCD QCD X_d TeV

M. Savina, JINR, Russia

The 20th Lomonosov Conference

24.08.2021

M. Savina, JINR, Russia

The 20th Lomonosov Conference

24.08.2021