Polarization effects in the search for dark vector boson in e^+e^- colliders

by Guey-Lin Lin National Yang Ming Chiao Tung University, Taiwan
Phys.Rev.D 103 (2021) 1, 015016
Introduction and motivations

- Growing interests in searching for DM related phenomenon with high statistics and high precision measurements.

- Such phenomenon has to do hidden sector*, assumed to interact with the visible sector through a messenger particle.

- A popular proposal for such a messenger is the so-called dark photon**, which mixes with $U(1)_Y$ in SM.

Introduction and motivations

- Such a mixing induces EM couplings between dark photon and SM fermions, which generate rich phenomenology.

- The search for light boson with the reaction $e^+e^- \rightarrow A' + \gamma$ has been proposed*.

- Many new proposals to search for dark photons with the above process—see the list next page

- These proposals are based upon either fixed target or electron-positron collider

Introduction and motivations

- B. Wojtsekhowski et al., JINST 13, no. 02, P02021 (2018)
Introduction and motivations

• The dark photon interaction with EM current is given by
 \[\mathcal{L}_{\text{int}} = \varepsilon_\gamma e J_{\text{em}}^{\mu} A'_\mu \quad \varepsilon_\gamma \equiv \varepsilon \text{ in} \]
 \[\mathcal{L}_{\text{gauge}} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \frac{1}{2} \frac{\varepsilon}{\cos \theta_W} B^{\mu\nu} A'_\mu A'_\nu - \frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} \]

• The neutral current interaction is suppressed in the limit \(M_{A'} \ll M_Z \)

• The detection of \(A' \) determines the mixing parameter and the mass of the dark photon.

• On the other hand, there could be other mixing between dark boson and SM gauge bosons, such as:

 \[\mathcal{L}_{\text{mass}} = \frac{1}{2} M_Z^2 Z_\mu^0 Z^{0\mu} - \delta m^2 Z_\mu^0 A'^{\mu} + \frac{1}{2} M_{A'}^2 A'_\mu A'^{\mu} \]

Introduction and motivations

• With the above mass mixing, an independent neutral current coupling between dark boson and SM fermions is induced:

$$\mathcal{L}_{\text{int}} = \varepsilon_Z \frac{g}{\cos \theta_W} J_{\text{NC}}^\mu A'_\mu \text{ with } \varepsilon_Z \equiv \delta m^2 / M_Z^2$$

• Considering both mixings, the interaction between dark boson (renamed as Z_d from now on) and SM fermions becomes

$$e\varepsilon \bar{f}(g_f, V \gamma_\mu + g_f, A \gamma_\mu \gamma_5) f Z_d^\mu$$

• In the search for Z_d with $e^+e^- \rightarrow Z_d +\gamma$, can one determine the relative strength of vector and axial-vector couplings?

• The key is on the polarization of Z_d
Outline

• Heuristic derivation of Z_d-fermion interactions

• Ward-Takahashi identity and the polarization of Z_d in $e^+e^- \rightarrow Z_d + \gamma$

• Differential cross section of $e^+e^- \rightarrow Z_d + \gamma$ for each polarization of Z_d and the decay distribution of $Z_d \rightarrow l^+l^-$

• Searching for Z_d by $e^+e^- \rightarrow Z_d + \gamma$ and Z_d decaying to muon pairs in BaBar and Belle II

• Summary
Heuristic derivation of Z_d-fermion interactions

The mixing terms give two point functions

\[i \Pi^{\mu\nu}_{A_{Z_d}} = i \varepsilon k^2 g^{\mu\nu}, \]
\[i \Pi^{\mu\nu}_{Z_{Z_d}} = -i (\varepsilon \tan \theta_W k^2 + \delta m^2) g^{\mu\nu}, \]

The EM interactions of dark boson

\[i e J^\alpha_{em} \frac{-ig_{\alpha\mu}}{k^2} i \varepsilon k^2 g^{\mu\nu} Z_{d\nu} = i e \varepsilon J^\nu_{em} Z_{d\nu}. \]

The $Neutral-Current$ interactions of dark boson

\[\frac{ig}{\cos \theta_W} J^\alpha_{NC} \frac{-i}{k^2 - M_Z^2} (g_{\alpha\mu} - \frac{k_{\alpha} k_{\mu}}{M_Z^2}) \cdot (-i) (\varepsilon \tan \theta_W k^2 + \delta m^2) g^{\mu\nu} Z_{d\nu} \]
\[= \frac{-ig}{\cos \theta_W} J^\nu_{NC} Z_{d\nu} \frac{(\varepsilon \tan \theta_W M_{Z_d}^2 + \delta m^2)}{(M_{Z_d}^2 - M_Z^2)}. \]
Heuristic derivation of Z_d-fermion interactions

In the limit $M_{Z_d} \ll M_Z$

$$\mathcal{L}_{\text{int}} = \left(\varepsilon_\gamma e J^\mu_{\text{em}} + \varepsilon_Z \frac{g}{\cos \theta_W} J^\mu_{\text{NC}} \right) Z_{d\mu},$$

$$\varepsilon_Z \equiv \delta m^2 / m^2_Z.$$
Ward-Takahashi identity and Z_d polarization

\[\epsilon^\mu(k_1) = (|\vec{k}_1|, E_{Z_d} \hat{k}_1)/m_{Z_d} \]

\[= k_1^\mu/m_{Z_d} + \mathcal{O}(m_{Z_d}/E_{Z_d}) \]

Z_d is expected to be transversely polarized for dark boson mass much less than CM energy

$= 0$ for $m_e \rightarrow 0$
BaBar search result and Belle II sensitivity to

\[A' \rightarrow e^+ e^-, \mu^+ \mu^-, hh \]

Take \(\varepsilon = 7 \times 10^{-4}; m_{Z_d}/\sqrt{s} = 0.1, 0.3, \) and 0.8.

Polarized amplitudes

\[\theta \] the direction of \(Z_d \) with respect to \(e^- \) direction in CM frame

\[|\vec{M}|_+^2 = \frac{8\pi^2 \alpha^2 \varepsilon^2}{(t - m_e^2)(u - m_e^2)} \left[(1 + \cos^2 \theta)(s^2 + m_{Z_d}^4) + \rho \cos \theta (s - m_{Z_d}^2)^2\right], \]

\[|\vec{M}|_-^2 = \frac{8\pi^2 \alpha^2 \varepsilon^2}{(t - m_e^2)(u - m_e^2)} \left[(1 + \cos^2 \theta)(s^2 + m_{Z_d}^4) - \rho \cos \theta (s - m_{Z_d}^2)^2\right], \]

\[|\vec{M}|_{\parallel}^2 = \frac{8\pi^2 \alpha^2 \varepsilon^2}{(t - m_e^2)(u - m_e^2)} (4m_{Z_d}^2 s \sin^2 \theta), \]

where \(\rho = 4g_{f,V}g_{f,A} \).

\[g_{f,V}^2 + g_{f,A}^2 = 1 \]

\(m_e \) is neglected except in the denominator.
Polarized differential cross sections

\[
\frac{d\sigma_i}{d\cos \theta} = \frac{1}{32\pi s} \left(1 - \frac{m_{Z_d}^2}{s}\right) |\mathcal{M}|_i^2
\]

Differential cross section for longitudinal state is clearly suppressed by \(m_{Z_d}^2/s\)
Polarized differential cross sections—numerical results

\[\varepsilon = 7 \times 10^{-4}; \sqrt{s} = 10.58 \text{ GeV CM frame} \]

V-A coupling
Polarized differential cross sections-numerical results

$g_{f,V} = -g_{f,A} = 1/\sqrt{2}$, $m_{Z_t} = 0.3\sqrt{s}$
Longitudinal polarization is now equally important. Helicity +1 and -1 states getting closer to each other.
Z\textsubscript{d} decay distributions and the parity violation parameter \(\rho \equiv 4g_{l,V}g_{l,A} \)

Angular distributions of Z\textsubscript{d} decays

Helicity +1 state
\[
\frac{d\Gamma_{l+l-}^{+}}{d\cos \theta_{d}} = \frac{\alpha \varepsilon^2 y}{2m_{Z_d}} \left[2g_{l,V}m_{l}^2 + (1 + \cos^2 \theta_{d})p_{l}^2 + \rho \cos \theta_{d}E_{l}p_{l} \right]
\]

Helicity -1 state
\[
\frac{d\Gamma_{l+l-}^{-}}{d\cos \theta_{d}} = \frac{\alpha \varepsilon^2 y}{2m_{Z_d}} \left[2g_{l,V}m_{l}^2 + (1 + \cos^2 \theta_{d})p_{l}^2 - \rho \cos \theta_{d}E_{l}p_{l} \right]
\]

Longitudinal state
\[
\frac{d\Gamma_{l+l-}^{\parallel}}{d\cos \theta_{d}} = \frac{\alpha \varepsilon^2 y}{m_{Z_d}} \left[g_{l,V}m_{l}^2 + \sin^2 \theta_{d}p_{l}^2 \right]
\]

\[y = \sqrt{1 - \frac{4m_{l}^2}{m_{Z_d}^2}} \]
Forward-backward asymmetry of leptons from Z_d decays
Z_d produced in the backward direction $-1 \leq \cos \theta \leq 0$

\[m_{Z_d} = 0.1 \sqrt{s}, \beta \equiv p_l/E_l = 1 \]

![Graph showing the distribution of $dP/d\cos\theta_d$ vs $\cos\theta_d$ for $m_{Z_d} = 0.1 \sqrt{s}, \beta = 1$ with different $|p_l|$ values: $|p_l| = 0$, $|p_l| = 1$, $|p_l| = 2$.](image-url)
Forward-backward asymmetry of leptons from \(Z_d \) decays

\[m_{Z_d} = 0.8\sqrt{s}, \beta \equiv p_l/E_l = 1 \]
Double angular distributions; correlation between Z_d and lepton directions

\[
\frac{d^2 P}{dkd\xi} = \frac{1}{\sigma_T \cdot \Gamma_{l+l^-}} \sum_i \left(\frac{d\sigma^i}{d\cos\theta} \right) \cdot \left(\frac{d\Gamma^i_{l+l^-}}{d\cos\theta_d} \right)
\]

\[
= Q_0(\kappa, \xi) + Q_2(\kappa, \xi) \rho^2
\]

\[\kappa = \cos\theta, \quad \xi = \cos\theta_d\]

Q_0: even in both κ and ξ

Q_2: odd in both κ and ξ

\[
Q_2 \rho^2 \sim \left(\frac{p_l}{E_l} \right) \rho^2 (1 - m^2_{Z_d}/s)^2 \kappa\xi/(1 - \kappa^2)
\]

Changes sign when $\kappa \cdot \xi$ changes sign;

Reaching to maximum for ultra-relativistic lepton and the limit $s \gg m^2_{Z_d}$
Signal event asymmetry

\[\kappa = \cos \theta, \quad \xi = \cos \theta_d \]

\[A_{\text{PN}} \equiv \frac{S(\kappa \cdot \xi > 0) - S(\kappa \cdot \xi < 0)}{S(\kappa \cdot \xi < 0) + S(\kappa \cdot \xi > 0)} = \frac{3}{4} \left(\frac{\rho^2}{4} \right) \frac{-\ln \left(1 - \kappa_m^2 \right)}{\ln \left(\frac{1+\kappa_m}{1-\kappa_m} \right) - \kappa_m} \]

\(\kappa_m \) : maximum of \(\kappa \) \quad \(-\kappa_m\) : minimum of \(\kappa \)

\(\xi \) : fully integrated

\(\kappa_m = 0.95 \Rightarrow A_{\text{PN}} = 0.64 \times \left(\frac{\rho^2}{4} \right) \quad \varepsilon_\gamma = \varepsilon_Z \quad \rho = 1.74 \)

\(\kappa_m = 0.80 \Rightarrow A_{\text{PN}} = 0.55 \times \left(\frac{\rho^2}{4} \right) \quad \varepsilon_\gamma = \varepsilon_Z \tan \theta_W \quad \rho = -2 \frac{V - A}{V + A} \)

This parameter has to be calculated with actual detector acceptance
Prospect of probing parity violation parameter ρ at Belle II

Belle II calorimeter angular coverage*

Corresponding photon rapidity range

Boost velocity from LAB to CM

$\beta_{\text{CM}} = (E_{e^-} - E_{e^+})/(E_{e^-} + E_{e^+}) = 3/11$

7GeV 4GeV

$\eta_{\gamma}^{\text{CM}} = \eta_{\gamma}^{\text{lab}} + \ln((1 - \beta_{\text{CM}})/(1 + \beta_{\text{CM}}))/2 \Rightarrow -1.79 \leq \eta_{\gamma}^{\text{CM}} \leq 1.94$

K_Λ-muon detector angular coverage

$25^\circ \leq \theta_{\mu}^{\text{lab}} \leq 150^\circ \Rightarrow -1.60 \leq \eta_{\mu}^{\text{CM}} \leq 1.23$

BaBar search result and Belle II sensitivity to

\[A' \rightarrow e^+ e^-, \mu^+ \mu^-, hh \]

Belle II sensitivity is comparable to BaBar results for the same integrated luminosity
Calculating \mathcal{A}_{PN} in Belle II

$$\mathcal{A}_{PN} \equiv \frac{S(\kappa \cdot \xi > 0) - S(\kappa \cdot \xi < 0)}{S(\kappa \cdot \xi < 0) + S(\kappa \cdot \xi > 0)}$$

$$\sigma_{\mathcal{A}_{PN}} = \sqrt{1 + \mathcal{A}_{PN}^2(\sqrt{B}/S)}$$

Assume a 5 σ detection of dark boson signature at 50 ab$^{-1}$

$$S = 5\sqrt{B}$$

CalcHEP version 3.7.5, A. Pukhov, A. Belyaev, and N. Christensen, 2019
Results
Detection significance and asymmetry parameter

\[\chi^2 = 2 \left(n \ln\left(\frac{n}{w} \right) + w - n \right) \]

\(n \): observed event number

\(w \): expected event number

\[n = S + B, \quad w = B \]

Detection significance

Simultaneous fittings to \(\kappa \cdot \xi > 0 \) and \(\kappa \cdot \xi < 0 \) event bins

\[\chi^2 = 2 \left(n_a \ln\left(\frac{n_a}{w_a} \right) + w_a - n_a \right) + 2 \left(n_b \ln\left(\frac{n_b}{w_b} \right) + w_b - n_b \right) \]

\[n_{a,b} = S_{a,b} + B_{a,b} \quad (S_a + S_b = S, \quad B_a + B_b = B) \]

\[\mathcal{A}_{PN} = (S_a - S_b) / (S_a + S_b) \]

Detection significance

\[\frac{S}{\sqrt{B}} \sqrt{1 + \mathcal{A}_{PN}^2} \cdot \sigma \]
Numerical results with Belle II detector angular coverage

Cross section* for QED background $e^+e^- \rightarrow \gamma \mu^+\mu^-$ with photon and muon rapidity ranges and \sim5 MeV energy resolution for the invariant mass $M_{\mu^+\mu^-}$

\begin{align*}
\sim 7.76 \times 10^{-2} \text{ pb} & \quad \text{for } M_{\mu^+\mu^-} \approx 0.5 \text{ GeV} \\
\sim 2.48 \times 10^{-2} \text{ pb} & \quad \text{for } M_{\mu^+\mu^-} \approx 2.0 \text{ GeV}
\end{align*}

Assume a 5σ detection of dark boson signature at 50 ab$^{-1}$

\begin{align*}
S &= 9850, \quad B = 3.88 \cdot 10^6 & m_{Z_d} &= 0.5 \text{ GeV} \\
S &= 5700, \quad B = 1.30 \cdot 10^6 & m_{Z_d} &= 2.0 \text{ GeV}
\end{align*}

*CalcHEP version 3.7.5, A. Pukhov, A. Belyaev, and N. Christensen, 2019
Summary on asymmetry parameters, event numbers and detection significance

\(\rho	\)	\(m_{Z_d}/\text{GeV}\)	0.00	1.74	2.00			
\(\rho	\)	\(m_{Z_d}/\text{GeV}\)	0.5	2.0	0.5	2.0	0.5	2.0
\(A_{\text{PN}}\)	\(A_{\text{PN}}\)	0.0	0.0	0.43	0.44	0.58	0.60		
\(\text{Det. Sig. (Eq. (15))}\)	\(\text{Det. Sig. (Eq. (15))}\)	5.0\(\sigma\)	5.0\(\sigma\)	5.4\(\sigma\)	5.5\(\sigma\)	5.8\(\sigma\)	5.8\(\sigma\)		
\(S(\kappa \cdot \xi > 0)\)	\(S(\kappa \cdot \xi > 0)\)	4925	2817	7040	4053	7780	4507		
\(S(\kappa \cdot \xi < 0)\)	\(S(\kappa \cdot \xi < 0)\)	4925	2817	2810	1581	2070	1127		
\(\text{Br}(Z_d \rightarrow \mu^+\mu^-)\)	\(\text{Br}(Z_d \rightarrow \mu^+\mu^-)\)	40\%	24\%	21\%	7.5\%	17\%	6.7\%		
\(\varepsilon \cdot 10^4\)	\(\varepsilon \cdot 10^4\)	3.3	3.2	4.6	5.7	5.1	6.1		
Conclusions

- We have discussed the search for dark boson with the process $e^+e^- \rightarrow Z_d + \gamma$ in the e^+e^- collider.
- The dark boson is shown to be transversely polarized when the dark boson mass is much less than the CM energy.
- We analyze the muon angular distributions from polarized Z_d decays and define the asymmetry parameter A_{PN} which is proportional to the square of parity violation parameter $\rho \equiv 4g_{l,V}g_{l,A}$.
- We calculate the asymmetry parameter with Belle II detector angular coverage and discuss its consequences on the dark boson search.