20th Lomonosov Conference on Elementary Particle Physics

August 19-25, 2021

STATE UNIVERSITY

Background for gravitational wave signal at LISA from refractive index of solar wind plasma

FRANTIŠEK NĚMEC^{b)}, ZDENĚK NĚMEČEK^{b)}, <u>ADAM SMETANA</u>^{a)}, JANA ŠAFRÁNKOVÁ^{b)}

- INSTITUTE OF EXPERIMENTAL AND APPLIED PHYSICS, CZECH TECHNICAL UNIVERSITY IN PRAGUE, CZECH REPUBLIC a)
- DEPARTMENT OF SURFACE AND PLASMA SCIENCE, FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY, PRAGUE, CZECH RÉPUBLIC b)

Mon Not R Astron Soc Lett (2020) slaa155 1745-39254

Gravitational wave antennas

Ground-based GW antennas (LIGO, VIRGO)

- Size limitation
- Seismic noise
- Vacuum technology
- Ultra-high vacuum (~ 10⁷ molecules/cm³)
- Vacuum (im)purity under control

Space-based GW antennas (LISA)

- Free of size limitation
- No seismic noise
- Vacuum for free
- Better vacuum (~ 10 particles/cm³)
- Vacuum (im)purity NOT under control

Amaro-Seoane P., et al., 2017, Laser Interferometer Space Antenna (arXiv:1702.00786)

LISA – Laser Interferometer Space Antenna

LISA challenges

Amaro-Seoane P., et al., 2017, Laser Interferometer Space Antenna (arXiv:1702.00786)

Interferometry with

- Variable arm length ($\Delta l \approx 50.000$ km) during the orbit
- Single laser path (no coherent beams)
- Overwhelming laser wavelength noise due to unequal arm length -> Time delayed interferometry
- Doppler shifted laser beam (±5 m/s)
- Mechanical, Thermal, Electronic, Optical noise
- Test mass charging
- High energy cosmic rays
- Solar wind jitter
- Timing and Clock Synchronisation

Laser stability

8/20/2021

Ontical impurity

LISA parameters

6 laser links operating on the wavelength

 $\lambda = 1064\,\mathrm{nm}$

Variable arm length with average

 $L=2.5\times 10^6\,{\rm km}$

Displacement noise linear spectral density

$$\sqrt{S_{\rm IFO}} \le 10^{-11} \frac{\rm m}{\sqrt{\rm Hz}} \sqrt{1 + \left(\frac{2\rm mHz}{f}\right)^4}$$

for $10^{-4} \rm Hz \le f \le 10^{-1} \rm Hz$,

Amaro-Seoane P., et al., 2017, Laser Interferometer Space Antenna (arXiv:1702.00786)

Refractive index of solar wind plasma

Solar wind (SW)

- Composition: electrons ~ protons > alpha > heavier ions
- at 1 AU from the Sun (LISA's and Earth's orbit)
 - average particle density ~ 10 cm⁻³ and quasi-neutrality $\rightarrow n_e \approx n_p \approx 5$ cm⁻³
 - at scales of optical wavelengths range $\sim 1 \,\mu$ m, SW is practically a collision-less ideal plasma
 - electron component is characterized by plasma frequency

$$\omega_p^2 = \frac{n_e e^2}{\epsilon_0 m_e}$$

Which dominates the Sellmeier equation for refractive index n for elmag wave of frequency ω

$$n = \sqrt{1 - \frac{\omega_p^2}{\omega^2}} \doteq 1 - \frac{1}{2}\frac{\omega_p^2}{\omega^2} + \dots$$

For optical elmag wave $\Delta n \sim 10^{-21}$

Estimation of the background for LISA from the solar wind plasma effect

Effective displacement:

$$h_{\rm SW}(t) = \frac{1}{2} \frac{n_e(t)e^2}{\epsilon_0 m_e \omega^2} L$$

Effective strain:

Linear spectral density:

to be compared with LISA's required $\sqrt{S_{
m IFO}}$

Solar wind data

Preliminary results

More detailed results

8/20/2021

76210 spectra

Discussion of the result

- The result is applicable to any space-based intereferometer of the LISA's type
- The effect will be observable only at the full scale LISA, no "Pathfinder" mission would discover it
- Averaging-out effect
 - After all the situation does not need to be so severe

shall we take the risk? - subject of future modelling

Hint from STEREO - trajectories

Hint from STEREO - correlations

Correlation length: L = 24 mil. km

Proposed solutions

- 1. Measure the solar wind density along the LISA's arms
 - What accuracy is needed?
 - How many detectors?

2. Deploy second laser system of different wavelength

 $\lambda' = r\lambda$

and subtract their signals

$$\Delta h(t) = r^2 h(t) - h'(t)$$

• What is a systematic bias introduced?

J. W. Armstrong, "Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking", *Living Rev. Relativity*, 9 (2006)

Current status

Cross check with LISA collaboration – has been made

- Sept 1-3 2020, LISA Symposium
- Conclusion from 90's was that the effect is not significant for LISA not published
- The effect was described in the context of the Doppler mission
 - J. W. Armstrong, "Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking", *Living Rev. Relativity*, 9 (2006)
- The error of factor ~3 in the LSD was detected and removed
 - ERRATUM to be done to Mon Not R Astron Soc Lett (2020) slaa155 1745-39254

Collaboration with Charles University - has been established

- Correlation length estimates based on real data (STEREO, L1 missions)
- More complex analysis of WIND data has been performed
- 3D modelling (average conditions, events)
- Simulation of the 3-arm LISA response is needed further suppression of the effect is expected