Probing the scale of grand unification with gravitational waves

Valerie Domcke CERN/EPFL

@ Lomonosov conference 23.08.2021

based on 1912.03695, 2009.10649, 2107.04578 w. W. Buchmüller, H. Murayama and K. Schmitz

Valerie Domcke - CERN/EPFL

cosmic strings in a nutshell

- one-dimensional topological defects formed in an early Universe phase transition
- symmetry breaking pattern $G \to H$ produces cosmic strings iff $\Pi_1(G/H) \neq \mathbb{1}$

- form cosmic string network, evolves through
 - string (self-)intersection & loop formation
 - emission of particles and gravitational waves

Allen & Shellard `90

metastable cosmic strings

consider
$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$$

Vilenkin `82; Leblond, Shlaer, Siemens `09; Monin, Voloshin `08/09; Dror et al `19

 $\Pi_1(G_{\rm SM} \times U(1)/G_{\rm SM}) = \Pi_1(U(1)) \neq \mathbb{1} \quad \longrightarrow \quad \text{cosmic strings}$ $\Pi_1(SO(10)/G_{SM}) = \mathbb{1} \quad \longrightarrow \quad \text{no cosmic strings}$

metastable cosmic strings

consider
$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$$

Vilenkin `82; Leblond, Shlaer, Siemens `09; Monin, Voloshin `08/09; Dror et al `19

 $\Pi_1(G_{\rm SM} \times U(1)/G_{\rm SM}) = \Pi_1(U(1)) \neq \mathbb{1} \quad \longrightarrow \quad \text{cosmic strings}$ $\Pi_1(SO(10)/G_{SM}) = \mathbb{1} \quad \longrightarrow \quad \text{no cosmic strings}$

resolution: no topologically stable cosmic strings

 $SO(10) \rightarrow G_{SM} \times U(1)_{B-L}$ generates monopoles

 $G_{SM} \times U(1)_{B-L} \to G_{SM}$

generates cosmic strings,

metastable string & monopole network

metastable cosmic strings

consider
$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$$

Vilenkin `82; Leblond, Shlaer, Siemens `09; Monin, Voloshin `08/09; Dror et al `19

 $\Pi_1(G_{\rm SM} \times U(1)/G_{\rm SM}) = \Pi_1(U(1)) \neq \mathbb{1} \quad \longrightarrow \quad \text{cosmic strings}$ $\Pi_1(SO(10)/G_{SM}) = \mathbb{1} \quad \longrightarrow \quad \text{no cosmic strings}$

resolution: no topologically stable cosmic strings

 $SO(10) \to G_{SM} \times U(1)_{B-L}$

cosmic inflation

 $G_{SM} \times U(1)_{B-L} \to G_{SM}$

generates monopoles

dilutes monopoles

metastable string & monopole network

generates cosmic strings,

decay via Schwinger production of monopoles

 $\Gamma_d \sim \mu \exp(-\pi \kappa^2), \quad \kappa^2 = m^2/\mu$

 $\mu \sim v_{B-L}^2$ string tension $m \sim v_{GUT}$ monopole mass

gravitational wave signal - SGWB

see eg. Auclair, Blanco-Pillado, Figuera et al `19

gravitational wave emission from integration over loop distribution function:

$$\Omega_{\rm GW}(f) = \frac{8\pi f (G\mu)^2}{3H_0^2} \sum_{n=1}^{\infty} C_n(f) P_n$$
$$C_n(f) = \frac{2n}{f^2} \int_0^{z_{\rm max}} dz \frac{\mathcal{N}(\ell(z), t(z))}{H(z)(1+z)^6}$$

GW power spectrum of a single loop

of loops emitting GWs observed at frequency *f* today

of loops with length ℓ at time *t*

with $\ell = 2n/((1+z)f)$

cosmological history

gravitational wave signal - SGWB

see eg. Auclair, Blanco-Pillado, Figuera et al `19

gravitational wave emission from integration over loop distribution function:

$$\Omega_{\rm GW}(f) = \frac{8\pi f(G\mu)^2}{3H_0^2} \sum_{n=1}^{\infty} C_n(f) P_n$$
$$C_n(f) = \frac{2n}{f^2} \int_0^{z_{\rm max}} dz \frac{\mathcal{N}(\ell(z), t(z))}{H(z)(1+z)^6}$$

GW power spectrum of a single loop

of loops emitting GWs observed at frequency *f* today

of loops with length ℓ at time *t*

with $\ell = 2n/((1+z)f)$

cosmological history

$$\begin{split} \mathcal{N}(\ell,z) &= \mathcal{N}(\ell,z)_{\kappa \to \infty} \times \underbrace{e^{-\Gamma_d [\ell (t-t_s)+1/2\Gamma G \mu (t-t_s)^2]} \times \Theta(\alpha t_s - \ell(t_s))}_{\text{finte CS life time production and GW}} & \text{finte CS life time }\\ \underbrace{\mathcal{N}_r(\ell,t) &= 0.18 \ t^{-3/2} (\ell + 50G \mu t)^{-5/2}}_{\text{Blanco-Pillado, Olum, Shlaer '14}} & \text{decay due to monopole emission} \\ \underbrace{\mathcal{N}_r(\ell,t) &= 0.18 \ t^{-3/2} (\ell + 50G \mu t)^{-5/2}}_{\text{Buchmüller, VD, Schmitz `21}} & \text{Suchmüller, VD, Schmitz `21} \end{split}$$

gravitational wave spectrum

NANOGrav: A first glimpse of the SGWB?

Pulsar timing array NANOGrav, Sept 2020:

"Our analysis finds strong evidence of a stochastic process, modeled as a power-law, with common amplitude and spectral slope across pulsars."

NANOGrav collaboration `20

"However, we find no statistically significant evidence that this process has quadrupolar spatial correlations, which we would consider necessary to claim a GWB detection consistent with General Relativity."

Parkes Pulsar timing array

PPTA `21, 2107.12112

amplitude and spectral tilt compatitive with NANOGrav

no significant detection of quandropolar spatial correlation

Maybe. Stay tuned for more data!

cosmic strings at PTAs?

Prospects for GW searches

parameter space of metastable strings

metastable GUT- scale strings are testable

Conclusions & Outlook

- Metastable cosmic strings are a fairly generic byproduct of GUTs with large stochastic GW signals possible at PTAs, LIGO or LISA
 - testable with upcoming GW detectors
- Excess noise observed in NANOGrav and PPTA data may be the first glimpse at a SGWB
 - amplitude & tilt compatible with metastable cosmic strings
 - also compatible with super-massive BH mergers
 - no detection of quadrupolar signature (yet). More careful scrutiny of data & data analysis needed

Conclusions & Outlook

- Metastable cosmic strings are a fairly generic byproduct of GUTs with large stochastic GW signals possible at PTAs, LIGO or LISA
 - testable with upcoming GW detectors
- Excess noise observed in NANOGrav and PPTA data may be the first glimpse at a SGWB
 - amplitude & tilt compatible with metastable cosmic strings
 - also compatible with super-massive BH mergers
 - no detection of quadrupolar signature (yet). More careful scrutiny of data & data analysis needed

Questions ?

backup slides

GWs from segments

Prospects

