Flow measurement of small collisions systems measured by **PHENIX experiment at RHIC**

Seyoung Han for the PHENIX collaboration

CENuM, Korea University, Seoul

23rd Aug. 2021

TWENTIETH CONFERENCE Moscow, August 19 - 25, 2021 Mikhail Lomonosov 1711-1765 PARTICLE PHYSICS

Collective behavior in heavy ion collision

Time

20th Lomonosov conference

Initial geometry effects at small collisions PHENIX collaboration, Nature Physics 15, 214–220 (2019)

SONIC 2D temp profile

Initial geometry effects at small collisions PHENIX collaboration, Nature Physics 15, 214–220 (2019)

Consistent hierarchy shown in eccentricity and measured flow

The PHENIX experiment at RHIC BBCS FVTX S CNT Backward

PC₃ PC3 Central Magnet TEC PbSc PbSc PC2 PbSc PbSc CNT 10.9 BBC TOF-W RICH RICH PbGl PbSc 36 ft (F)VTX MPC PC1 PC1 PbGl PbSc Aerogel Т́ОF-Е Beam View West East

- Charged particle measurement
- Particle identification

20th Lomonosov conference Forward RPC3 BBC **FVTX** ZDC North Main

- Charged particle measurement
- Triggering
- Event-plane determination

Flow factorization

 $c_{\gamma}^{AB} = v_{\gamma}^{A}v_{\gamma}^{B}$

Medium particles are correlated but are uncorrelated with the nonflow particles such as jet.

N.B. Kinematics for PHENIX Nature Physics published results

Larger multiplicity events;

Larger fraction of the particles are expected to be from the medium influences of jet particles are reduced

Flow factorization

 $c_{\gamma}^{AB} = v_{\gamma}^{A}v_{\gamma}^{B}$

Medium particles are correlated but are uncorrelated with the nonflow particles such as jet.

When flow factorization works

- Larger multiplicity events;
- Larger fraction of the particles are expected to be from the medium influences of jet particles are reduced

v2 as a function of pT; different kinematic selections **QM2019** presented

v2{3x2PC} as a function of pT **Compare BB results with EP calculates**

- p+Au, d+Au, and 3He+Au collisions that used the same rapidity combination
- We can find the event plane method gives consistent v2 results with the 3x2PC method
- The robustness of the Nature results is confirmed.

• v2 via 3x2PC using BB rapidity combination are in excellent agreement with the PHENIX Nature results in

v2{3x2PC} as a function of pT **Comparison with additional FB combinations**

- The STAR preliminary v2 results in p+Au, d+Au, and 3He+Au collisions can be reproduced by FB combinations of the 3x2PC method
- Higher v2 observed at all three collisions

PHENIX arXiv:2107.06634

$$\sqrt{\frac{c_2^{CNT-FVTXs}c_2^{CNT-FVTXn}}{c_2^{FVTXn-FVTXs}}} \neq \sqrt{\frac{c_2^{CNT-BBCs}c_2^{CNT-FVTXs}}{c_2^{BBCs-FVTXs}}}$$

Flow factorization seems to be broken because of the nonflow effect which is not eliminated

v3{3x2PC} as a function of pT **Compare with EP results from Nature Physics**

- Nature results in p+Au, d+Au, and 3He+Au collisions that used the same rapidity combination
- The robustness of the Nature results for the v3 are confirmed

v3 via 3x2PC using BB rapidity combination show good agreement with the PHENIX

v3{3x2PC} as a function of pT **Comparison with additional FB combinations**

- and d+Au, while v2 at 3He+Au collisions can have the real value
- cause the imaginary size of v3 at smaller collision systems

PHENIX arXiv:2107.06634

New v3 via 3x2PC using FB rapidity combination have the imaginary size of v2 at p+Au

Stronger nonflow at denominator or event-plane de-correlation effect at numerator can

Summary

- Published results calculated by EP method are confirmed by 3x2PC calculations
- Kinematic selections are very important to understand the flow at small collision systems
- PHENIX has an analysis effort on explaining/quantitating the difference between kinematic selections

Thanks for your attention backups

v2{3x2PC} as a function of pseudo-rapidity Comparison with different kinematics

 The breaking of flow factorization appears not only at mid-rapidity but also at the forward and backward rapidities in different centrality ranges

