

Recent results on light flavor hadron production in the ALICE experiment at the LHC

Victor Riabov for the ALICE Collaboration

Lomonosov conference - 2021

Introduction

System	Year	Energy (TeV)		
рр	2009-2013	0.9, 2.76, 7, 8		
0.000	2015,2017	5.02		
	2015-2018	13		
p-Pb/Pb-p	2013	5.02		
	2016	5.01, 8.16		
Xe-Xe	2017	5.44		
Pb-Pb	2010-2011	2.76		
	2015-2018	5.02		

- In heavy-ion collisions, the interacting system evolves through different stages and then cools down. Light flavor hadrons are the most copiously produced particles in the final state
- Measurements of light flavor hadrons are used to probe the collective evolution of the system, test the phase transition, properties of the system at chemical and kinetic freeze-out, the particle production mechanisms and reaction dynamics.
- ALICE studies the system size and collision energy dependence of particle production with the same apparatus using different data samples accumulated in Run-1 and Run-2

- A variety of hadrons measured in wide $p_{\rm T}$ ranges at different centralities
- Spectra become harder with increasing multiplicity (flatten at low p_T), most pronounced for heavier particles \rightarrow expected from collective hydrodynamic expansion (radial flow)
- Similar hardening of spectra has been also observed in high-multiplicity pp and p-Pb collisions

Mean transverse momenta

- Mass-dependent hardening of spectra manifests itself in $< p_T >$ increasing with multiplicity
- Steeper increase of $< p_T >$ in smaller collision systems
- Modest increase of $< p_T >$ with collision energy
- In heavy-ion collisions $\langle p_T \rangle$ is independent of the size of colliding nuclei (Xe-Xe vs. Pb-Pb)
- In central heavy-ion collisions particles with similar masses have similar values of $< p_T >$ as expected from hydrodynamic flow
- The mass ordering of $\langle p_T \rangle$ is violated in peripheral heavy-ion collisions as well as in pp and p-Pb

Blast-Wave model fits to $\pi/K/p$ spectra

- **Boltzmann-Gibbs Blast-Wave fits** are used to determine parameters of the radial flow:
 - \checkmark T_{kin} kinetic freeze-out temperature
 - \checkmark < $\beta_{\rm T}$ > transverse velocity
 - ✓ n velocity profile
- Fit parameters are extracted from a simultaneous fits to π , K, p spectra, results are sensitive to the

Kinetic freeze-out temperature decreases, transverse flow velocity increases with multiplicity

- Consistent results for Pb-Pb and Xe-Xe at similar multiplicities, $T_{\rm kin} \sim 100 \text{ MeV} < T_{\rm ch}$
- pp and p-Pb are also consistent but with larger values of $<\beta_T>$ at similar multiplicities
- $T_{\rm kin}$ stays constant in pp and slightly decreases in p-Pb, $T_{\rm kin} \sim 160 \,{\rm MeV} \sim T_{\rm ch} \rightarrow$ earlier decoupling compared to heavy-ion collisions

Baryon-to-meson ratios in heavy-ion collisions

Eur.Phys.J.C 81 (2021) 7, 584

- Enhanced baryon-to-meson ratios (p/ π , Λ/K) in central heavy-ion collisions at intermediate $p_T \rightarrow$ quark coalescence + flowing medium
- Enhancement is similar at different energies, peak is shifted to the right at higher energy
 - p/ϕ ratio is almost constant vs. p_T at intermediate momenta in Pb-Pb and Xe-Xe collisions \rightarrow spectral shapes are driven by particle masses:
 - ✓ consistent with hydrodynamics
 - ✓ recombination models are not ruled-out (V. Greco et al, PRC 92 054904 (2015))

Baryon-to-meson ratios in small systems

- Qualitatively similar behavior for three systems, from peripheral to central collisions:
 - $\checkmark \quad \text{depletion at } \log p_{\mathrm{T}}$
 - ✓ enhancement at intermediate $p_{\rm T}$
 - \checkmark consistent at high $p_{\rm T}$
- Smooth evolution with multiplicity between the collision systems at given $p_{\rm T}$

Baryon-to-meson ratios in jets

- Baryon-to-meson enhancement in p-Pb and pp collisions:
 - \checkmark not seen in jets
 - ✓ driven by soft processes (bulk effect)
- PYTHIA 8 is consistent with ratios in jets but does not reproduce the inclusive ratios at intermediate p_T
- Input for model tuning → contributions of the fragmentation, coalescence and flow

Strangeness enhancement increases with strangeness content and particle multiplicity

- Ratios saturate in central A-A at values predicted by statistical hadronization models
- Smooth evolution vs. multiplicity in pp, p-Pb, Xe-Xe, Pb-Pb collisions at various $\sqrt{s_{NN}}$
- STAR measurements in Cu-Cu, Au-Au at $\sqrt{s_{NN}} = 200$ GeV are in agreement with ALICE p-Pb results at similar $\langle dN_{ch}/d\eta \rangle$. Results from pp collision at $\sqrt{s} = 200$ GeV are consistent within the large uncertainties with ALICE results
- Origin of the strangeness enhancement in small/large systems is still under debate

Effective energy analysis in pp

• Energy available for particle production in the initial state $E_{eff} = \sqrt{s} - E_{ZDC}$ is measured with ZDC at $|\eta| > 8.8$

- Relative \(\mathcal{E}\) production has been shown to depend on the final state multiplicity in the previous slide
- Relative Ξ production does not show dependence on E_{eff} (initial state)

Strangeness enhancement for \phi(1020)

Phys. Lett. B807 135501(2020)

- φ with hidden strangeness is a key probe to study strangeness enhancement
 - ✓ ϕ/π increases with multiplicity in pp/p-Pb → not expected for canonical suppression
 - ✓ ϕ/π saturates in Pb-Pb and is consistent with thermal model predictions

Ratios \$\phi/K\$ and \$\pm\/\$/\$\phi\$ show weak dependence on multiplicity
→ \$\phi\$ has an effective strangeness of 1 or 2

Short-lived resonances

- Final state yields of resonances depend on:
 - \checkmark resonance yields at chemical freeze-out
 - \checkmark lifetime of the resonance and the hadronic phase
 - \checkmark type and scattering cross sections of daughter particles

ρ/π , K^{*0}/K, $\Sigma^{*\pm}/\Lambda$, Λ^{*}/Λ , Ξ^{*0}/Ξ and ϕ/K ratios

ncreasing meur	ρ(770)	K*(892)	Σ(1385)	Λ(1520)	Ξ(1530)	\$(1020)
cτ (fm/c)	1.3	4.2	5.5	12.7	21.7	46.2
σ _{rescatt}	$\sigma_{\pi}\sigma_{\pi}$	$\sigma_{\pi}\sigma_{K}$	$\sigma_{\pi}\sigma_{\Lambda}$	$\sigma_K \sigma_p$	$\sigma_{\pi}\sigma_{\Xi}$	$\sigma_K \sigma_K$

- Smooth evolution of the ratios with multiplicity from pp to Pb-Pb; suppression for short-lived ρ^0 , K*(892)⁰, $\Sigma(1385)^{\pm}$ and $\Lambda(1520) \rightarrow$ dominance of rescattering over regeneration; no significant effects for longer lived $\Xi(1530)^0$ and $\phi(1020)$
- EPOS + UrQMD qualitatively describe the trends; consistency between RHIC and the LHC
- Lower limit on the hadronic phase lifetime, $\tau_{had,phase} \sim 5-7$ fm/*c* in central Pb-Pb
- Hint of the finite lifetime of hadronic phase in high multiplicity pp/p-Pb

Polarization of vector mesons

Non-central heavy-ion collisions:

beam direction

- ✓ large angular momentum due to medium rotations (PRC 77 (2008) 024906, Beccattini et al.)
- ✓ very high magnetic field (~ 10¹⁴ T) formed for a short period of time (NPA 803 (2008), Kharzeev et al.)

- Light quarks can be polarized by $|\overline{J}|$ and $|\overline{B}|$
- If vector mesons are produced via recombination their spin may align
- Quantization axis:
 - ✓ normal to the production plane (momentum of the vector meson and the beam axis)
 - ✓ normal to the event plane (impact parameter and beam axis)
- Measure as anisotropies in angular distributions:

$$\frac{dN}{d\cos\theta} = N_0 \left[1 - \rho_{0,0} + \cos^2\theta (3\rho_{0,0} - 1) \right]$$

 $\rho_{0,0}$ is a probability for vector meson to be in spin state = $0 \rightarrow \rho_{0,0} = 1/3$ corresponds to no spin alignment

• Measure using $K^*(892)^0$ and $\phi(1020)$

Results for K^{*0} and ϕ vs. $p_{\rm T}$

- $\rho_{00} \sim 1/3$ for:
 - ✓ $p_{\rm T}({\rm K}^{*0}) > 2 \text{ GeV/c and } p_{\rm T}(\phi) > 0.8 \text{ GeV/c}$
 - K_s^0 with zero spin
 - ✓ K^{*0} and ϕ in pp collisions
 - ✓ K^{*0} and ϕ with random plane in Pb-Pb@2.76
- $\rho_{00} < 1/3$ for K^{*0} and ϕ at low p_T in semi-central Pb-Pb@2.76 collisions
- Confirmed with new measurements in Pb-Pb@5.02

Results for p_T and centrality dependence of ρ_{00} are qualitatively consistent with quark recombination in a polarized medium

Summary

- Light-flavor hadron spectra become harder with increasing multiplicity, mean transverse momenta show mass ordering in central A-A collisions, the ordering is broken in peripheral collisions as well as in p-Pb and pp
- Blast-Wave fits allow to extract common expansion velocity and kinetic freeze-out temperature
- Enhancement of baryon to meson ratios at intermediate p_T is a bulk effect driven by flow and quark coalescence
- Relative particle abundances are driven by the final state multiplicities rather than by collision system size or energy
- Strangeness enhancement smoothly evolves with final state multiplicity, increasing ϕ/π ratio does not support the canonical suppression scenario
- Short-lived resonance yields are suppressed, the hadronic phase lifetime > 5-7 fm/c, a hint of finite hadronic phase lifetime is observed in small systems
- Spin alignment for vector mesons is qualitatively consistent with quark recombination in a polarized medium, more theoretical efforts are required for understanding of the data

BACKUP

Lomonosov conference - 2021

Particle identification, ALICE

Lomonosov conference - 2021

Baryon-to-meson ratios: pp

- No unique explanation for baryon-to-meson ratios in small systems
- Pythia8 with color reconnection and DIPSY with color ropes qualitatively describe pp data
- EPOS-LHC over-predicts effect by collective radial expansion

Particle yields in pp and p-Pb vs. $dN_{\rm ch}/d\eta$

- Hadron yields increase ~ linearly with multiplicity, consistently for pp and p-Pb collisions at different energies
- Hadrochemistry is driven by event activity rather than by collision energy or size of the collision system
- Qualitative description by models

p/π and K/π ratios

- At similar multiplicities, particle ratios are consistent for different collision systems at different $\sqrt{s_{NN}}$ \rightarrow driven by event activity rather than by type of colliding nuclei and/or collision energy
- p/π shows a modest decrease with centrality at the LHC, consistent with antibaryon-baryon annihilation in the hadronic phase, which is more important in dense systems (Phys. Rev. Lett. 110, 042501)
- Increasing K/ π ratio is consistent with strangeness enhancement