Progresses on light hadron physics from BESIII

Yanping Huang

IHEP, CHINA For BESIII Collaboration

中國科學院為能物招加完備 Institute of High Energy Physics Chinese Academy of Sciences

20th Lomonosov Conference on Elementary Particle Physics August 23th, 2021

BEPCII / BESIII

MDC: $\sigma_p/p \sim 0.5\%$ @ 1GeV $\sigma_{dE/dx} \sim 6\%$ TOF: $\sigma_T \sim 90$ ps (barrel) 110 ps (endcap) SCS: 1.0T (2009) 0.9T (2012) EMC: $\sigma_E/\sqrt{E} \sim 2.5\%$ @1GeV

2004: started BEPCII/BESIII construction

- ✓ Double rings
- ✓ Beam energy: 1-2.3 GeV

✓ Designed luminosity: 1×10³³ cm⁻²s⁻¹
 2008: test run
 2009 – today: BESIII physics runs

BESIII Data sets

<u>World largest J/ψ, ψ(3686), ψ(3770)</u>

New forms of hardons

In quark model:

- New forms of hardrons in QCD prediction:
 - Multi-quark: quark number >= 4
 - Hybrid state: the mixture of quark and gluon
 - Glueball: composed of gluons

- Light hadron spectroscopy is a key tool to test and develop theory. Highlights from BESIII:
 - + X(1835) / X(ppb) studies
 - Search for the glueball
 - + a₀(980)-f₀(980) mixing
 - + PWA in ψ(3686)→K+K-η

Anomalous $\pi\pi\eta$ ' line shape near M_{ppb} threshold

- Both models describe data with almost equally good fit quality
- The ppb threshold structure is a molecule state or a bound state?

Search for the X(1835) in different decay modes

Dominant decays: $X(1835) \rightarrow f_0(980)\eta$ $M = 1844 \pm 9^{+16} \cdot 25 \text{ MeV}$ $\Gamma = 192^{+20} \cdot 17^{+62} \cdot 43 \text{ MeV}$ $B(J/\psi \rightarrow \gamma X(1835))B(X(1835) \rightarrow f_0(980)\eta)$ $= 3.31^{+0.33} \cdot 0.30^{+1.96} \cdot 1.29 \times 10^{-5}$

(c ²)	400	<u>+</u> ''''''''' T	· · · · /	' ' ' ' ""Ф	
5 GeV/	300		/ψ→γ	rγΨ	
/(0.035	200		₩ ₩	+	
yield	100	FAL	╲ ╹ ╋	₩ ' \ \	┝╺╋╌ _{╋╹} ╋╌╤
0	0				
		.2 1.4	1.6	1.8	2
	M(γφ) (GeV/c ²)				
		PRD 9	7,051	101	

Resonance	$m_R ({\rm MeV}/c^2)$	Γ (MeV)	<i>B</i> (10 ⁻⁶)
$\eta(1475) \ X(1835)$	$1477 \pm 7 \pm 13$ $1839 \pm 26 \pm 26$	$118 \pm 22 \pm 17$ $175 \pm 57 \pm 25$	$\begin{array}{c} 7.03 \pm 0.92 \pm 0.91 \\ 1.77 \pm 0.35 \pm 0.25 \end{array}$
$\eta(1475) \ X(1835)$	$1477 \pm 7 \pm 13$ $1839 \pm 26 \pm 26$	$118 \pm 22 \pm 17 \\ 175 \pm 57 \pm 25$	$\begin{array}{c} 10.36 \pm 1.51 \pm 1.54 \\ 8.09 \pm 1.99 \pm 1.36 \end{array}$

Two solutions with different interference options

The X(1835) may contain a sizable ss component

Search for the X(1835) in $J/\psi \rightarrow \omega \pi \pi \eta^{2}$

- ✤ 2-dimension fit is used for the signal extraction.
- No obvious signal of the X(1835), the corresponding B.R. rate is measured: 8.2×10⁻⁵ @ 90% CL

ents / (100 MeV

Search for glueball

Radiative J/ ψ decays are ideal for searching for glueballs – one

of the BESIII advantages with the world largest J/ψ data sample.

Possible potential glueball candidates:

PWA of $J/\psi \rightarrow \gamma \eta \eta$

A good channel for the 0++ and 2++ state search

Large production rate of f₀(1710)

- Comparable with the LQCD prediction
- Large overlap with other scale glueball candidates [e.g. f₀(1500)]

A strong contribution from f₂(2340): candidate for the lowest lying tensor glueball

Resonance	Mass (MeV/ c^2)	Width (MeV/ c^2)	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	Significance
$f_0(1500)$	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2σ
$f_0(1710)$	$1759 \pm 6^{+14}_{-25}$	$172 \pm 10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	25.0σ
$f_0(2100)$	$2081 \pm 13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09+0.64}_{-0.10-0.28}) \times 10^{-4}$	13.9 <i>o</i>
$f_2'(1525)$	$1513 \pm 5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	11.0σ
$f_2(1810)$	1822^{+29+66}_{-24-57}	$229^{+52+88}_{-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4σ
$f_2(2340)$	$2362^{+31+140}_{-30-63}$	$334_{-54-100}^{+62+165}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$	7.6 <i>o</i>

PWA of $J/\psi \rightarrow \gamma K_s K_s$

Model dependent analysis

PRD 98 (2018) 072003

3

Resonance	$M ({\rm MeV}/c^2)$	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma (\text{MeV}/c^2)$	$\Gamma_{\rm PDG}~({\rm MeV}/c^2)$	Branching fraction	Significanc
<i>K</i> *(892)	896	895.81 ± 0.19	48	47.4 ± 0.6	$(6.28^{+0.16+0.59}_{-0.17-0.52}) \times 10^{-6}$	35σ
$K_1(1270)$	1272	1272 ± 7	90	90 ± 20	$(8.54^{+1.07+2.35}_{-1.20-2.13}) \times 10^{-7}$	16 <i>σ</i>
$f_0(1370)$	$1350\pm9^{+12}_{-2}$	1200 to 1500	$231\pm21^{+28}_{-48}$	200 to 500	$(1.07^{+0.08+0.36}_{-0.07-0.34}) \times 10^{-5}$	25σ
$f_0(1500)$	1505	1504 ± 6	109	109 ± 7	$(1.59^{+0.16+0.18}_{-0.16-0.56}) \times 10^{-5}$	23σ
$f_0(1710)$	$1765\pm2^{+1}_{-1}$	1723^{+6}_{-5}	$146\pm 3^{+7}_{-1}$	139 ± 8	$(2.00^{+0.03+0.31}_{-0.02-0.10}) \times 10^{-4}$	$\gg 35\sigma$
$f_0(1790)$	$1870\pm7^{+2}_{-3}$	• • •	$146 \pm 14^{+7}_{-15}$	•••	$(1.11^{+0.06+0.19}_{-0.06-0.32}) \times 10^{-5}$	24σ
$f_0(2200)$	$2184 \pm 5^{+4}_{-2}$	2189 ± 13	$364\pm9^{+4}_{-7}$	238 ± 50	$(2.72^{+0.08+0.17}_{-0.06-0.47}) \times 10^{-4}$	$\gg 35\sigma$
$f_0(2330)$	$2411\pm10\pm7$		$349 \pm 18^{+23}_{-1}$		$(4.95^{+0.21+0.66}_{-0.21-0.72}) \times 10^{-5}$	35σ
$f_2(1270)$	1275	1275.5 ± 0.8	185	$186.7^{+2.2}_{-2.5}$	$(2.58^{+0.08+0.59}_{-0.09-0.20}) \times 10^{-5}$	33σ
$f_2'(1525)$	1516 ± 1	1525 ± 5	$75\pm1\pm1$	73^{+6}_{-5}	$(7.99^{+0.03+0.69}_{-0.04-0.50}) \times 10^{-5}$	$\gg 35\sigma$
$f_2(2340)$	$2233 \pm 34^{+9}_{-25}$	2345_{-40}^{+50}	$507\pm 37^{+18}_{-21}$	322_{-60}^{+70}	$(5.54^{+0.34+3.82}_{-0.40-1.49}) \times 10^{-5}$	26σ
0 ⁺⁺ PHSP					$(1.85^{+0.05+0.68}_{-0.05-0.26}) \times 10^{-5}$	26σ
2 ⁺⁺ PHSP					$(5.73^{+0.99+4.18}_{-1.00-3.74}) \times 10^{-5}$	13σ

Amplitude analysis of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

- Model independent analysis: two distinct sets of solutions above KK threshold.
- Significance structures in the scalar spectrum near 1.5GeV, 1.7GeV (f₀(1500), f₀(1710)).

PWA of $J/\psi \rightarrow \gamma \Phi \Phi$

A good channel for 0-+ and 2++ state search above 2GeV

- 0-+ states are dominant
- ◆ For f₂(2340), the large production rate is compatible with the LQCD prediction for tensor glueball, similar to that in the J/ψ→γηη, γK_sK_s
- X(2500) is observed with 8.8σ

The X(2370)

• First observation of the X(2370) in $J/\psi \rightarrow \gamma \pi \pi \eta'$ <u>PRL 106, 072002</u>

	combined results
$M \; ({ m MeV}/c^2)$	$2343.91 \pm 6.88(stat.) \pm 1.23(sys.)$
$\Gamma (MeV)$	$117.73 \pm 12.75(stat.) \pm 4.14(sys.)$
$B(J/\psi \to \gamma X(2370) \to \gamma K^+ K^- r)$	$(1.86 \pm 0.39 \ (stat.) \pm 0.29 \ (sys.)) \times 10^{-5}$
$B(J/\psi \to \gamma X(2370) \to \gamma K^0_S K^0_S \eta'$) $(1.19 \pm 0.37 \ (stat.) \pm 0.18 \ (sys.)) \times 10^{-5}$

EPJC 80 (2020) 746

Explanation from the comparison with LQCD prediction: 0⁻⁺ glueball candidate

Search for the X(2370) in $J/\psi \rightarrow \gamma \eta \eta \eta'$

Br(J/ψ→γX(2370))×Br(X(2370)→ηηη')<9.2×10⁻⁶ @ 96% CL

- No evident of the X(2370) in the ηηη' mass spectrum
- The upper limit is consistent in the 0⁻⁺ global assumption of the X(2370)

$a_0(980)-f_0(980)$ mixing

N.N. Achasov, S.A. Devanin & G.N. Shestakov, Phys. Lett. B88, 367 (1979)

isospin violation enhanced by K⁰ – K⁺ mass difference

C. Hanhart, B. Kubis, and J. R. Pelaez, Phys. Rev. D **76**, 074028 (2007) J. J. Wu and B. S. Zou, Phys. Rev. D **78**, 074017 (2007)

$a_0(980)-f_0(980)$ mixing

- Include the interference between the mixing signal and EM process in the mass fitting.
- First observation of the a₀(980)-f₀(980) mixing with 7.4σ for f₀(980)→a₀ (980) and 5.5σ for a₀(980)→f₀(980)

PWA in $\psi(3686) \rightarrow K^+K^-\eta$

PRD 101 (2020) 032008

- The dip ~1.7GeV in the K+K- mass spectrum can be well described with the φ(1680) and the X(1750)
- The X(1750) is determined to be J^{PC}= 1⁻⁻

Summary

- BESIII detector has successfully collected data samples, including 10billion J/ ψ events.
- A set of interesting and important results from the light hadron spectrum achieved:
 - Strong correlation between the X(1835) and mppb threshold enhancement.
 A molecule state or a bound state?
 - Wide search for the glueball and current glueball candidates (component):
 f₀(1710), f₂(2340), X(2370)
 - ✦ First observation of a₀(980)-f₀(980) mixing.
 - ★ The X(1750) was observed with the J^{PC}=1⁻¹
- With the highest J/ψ dataset, the more extensive and intensive investigation is ongoing, looking forward to new results in the near future.