

Study of tau neutrino production in NA65 **experiment at CERN SPS**

Yury Gornushkin (JINR, Dubna) For DsTau Collaboration

Outline

- Motivation
- Technique description
- Analysis status
- Summary and Prospects

YSICS

Tau neutrino interaction cross-section

Tau neutrino is the least studied particle at the moment Only a few measurements: Direct detection in beam-dump: **DONUT** (DIS) – 9 events Oscillated : **OPERA** (DIS), **Super-K** (QE), **IceCube**(DIS)

Cross section by DONuT: statistical error 33% systematic error >50% due to uncertainty in v_{τ} flux

More accurate measurement of v_{τ} cross-section would provide a complementary test of LU in neutrino scattering

Hints of Lepton Universality Violation

• Semi-leptonic decays of B meson prefers to decay into τ and v_{τ}

- Flavour Anomaly?

• Experimental results and SM prediction disagree by 4 σ • $B_c \rightarrow J/\Psi + \tau + v_\tau$ also has similar tendency (2 σ)

The NA65/DsTau experiment at the CERN SPS

- Study of v_{τ} production for future tau neutrino experiments.
- D_s double differential production cross section measurement as 95% of v_T are produced in $D_s \rightarrow \tau \rightarrow X$ decays $\frac{d^2\sigma}{dx_F dp_T^2} \propto (1 - |x_F|)^n \exp(-bp_T^2)$

To reduce v_{τ} flux uncertainty from >50% to 10%

Fundamental input for future v_{τ} experiment: SHiP, and indirectly FASER, SND@LHC

Principle of the experiment

Detection of double-kink + another Primary decay topology within a few mm \rightarrow \rightarrow

~5 mm

Ds

Yu.Gornushkin, Lomonosov Conference 2021

DsTau Collaboration

Letter of Intent submitted to the CERN-SPSC in 2016
Test Beam Studies in November 2016 and May 2017
Technical Proposal in 2017

- Pilot run 2018
 - 1/10 of the full-scale experiment with tungsten target
 - $^-$ 30 % uncertainty on ν_{τ} flux
 - Revise the DONUT result
 - ⁻ Charm physics
- Approved as NA65 in 2019
- DsTau paper: <u>JHEP 01(2020)033</u>
- Physics run 2021-2022
 - Full scale experiment with tungsten and molybdenum targets

DsTau web site: https://na65.web.cern.ch/

Yu.Gornushkin, Lomonosov Conference 2021

Japan: Aichi Chiba Kobe Kyushu Nagoya

Switzerland: Bern

Romania: Bucharest

Russia: Dubna

Turkey: METU

Expected performance

Run	Beam time	Emulsion surface	Systematic uncertainty for the cross section measurement	b 0.5 201
2018 pilot run	1 week	48 m² (30 modules)	$30\% \rightarrow \text{Re-evaluation}$ of the DONUT result	0.4 •
2021 physics run	2 weeks	545 m² (338 modules)	10% → Input for future measurement	0.2
2022 physics run	2 weeks			
			With	Syste

Systematic uncertainties	DONUT	With DsTau		
D _s differential cross section (x _F dependence)	~0.5	0.1		
Charm production cross section	0.17			
Decay branching ratio	0.23	- 0.05		
Target atomic mass effects (A dependence)	0.14			

Nuclear Emulsion detectors have highest spatial resolution

Emulsion film

10 GeV/c π

beam

Sensitivity 36 grains/100 µm

20 µm

Single emulsion film is high angular resolution tracker

Yu.Gornushkin, Lomonosov Conference 2021

Nucl.Instrum.Meth.A 556 (2006) 80-86

000

Cross-sectional view

200 nm

10¹⁴ AgBr crystals per film

- Volume occupancy 30%
- **Detection efficiency** 16% per crystal

Principle of DsTau experiment

Progress in automatic emulsion readout technique

Yu.Gornushkin, Lomonosov Conference 2021

0.5 m² /hour

Objective len

HTS - fastest emulsion data readout system wide field lens, multi-sensors, GPU. 20 GB/s or 2 PB/day with capability to process 1000 m² of emulsion per year

Data stored after scanning -**3D coordinates and direction of track segments**

Pilot run data processing

16 / 30 modules reconstructed, 2-4 months to process the rest.

Yu.Gornushkin, Lomonosov Conference 2021

Tracking with improved geometry of the setup after the alignment

Search for the vertexes

Decay search

Turkey (METU): **TRUBA** Computing Center resources CPU, GPU, 128 GB RAM Storage capacity: 100+ TB

Romania (ISS):

processing server CPU, GPU, 128 GB RAM Storage: ~40 TB

Pilot run data reconstruction performance:

Track registration efficiency >95%

Vertices distribution on Z

Reconstructed vertex position in the detector

Tracks emerging from tungsten

Track density according to simulation

Observed tracks and vertexes density, secondary tracks multiplicity and angular distribution are consistent with FLUKA and Geant4 simulation

Yu.Gornushkin, Lomonosov Conference 2021

Efficiency of $D_s \to \tau \to X$ detection

Selection

(1) Flight length of $D_s \ge 2$ emulsion layers

(2) Flight length of $\tau \ge 2$ layers & $\Delta \theta(D_s \rightarrow \tau) \ge mrad$

(3) Flight length of $\rm D_{s}<5~mm$ & flight length <5~mm

(4) $\Delta \theta(\tau) \ge 15$ mrad

(5) Pair charm: 0.1 mm < flight length < 5 mm (charged decays with $\Delta \theta$ > 15 mrad or neutradecays)

	Total efficiency (%)
	77
2	43
of τ	31
	28
n al	20

Background estimation

• Signal:

 $D_s \rightarrow \tau$ decay: small kink ~7 mrad

Charged hadrons mimic kinks Neutral hadrons mimic neutral charm decays

Signal probability 2.2x10⁻⁷/proton

_Dcharged BG

Yu.Gornushkin, Lomonosov Conference 2021

Main background: Hadron interactions of secondary hadrons of

No nuclear fragment detected

Background probability estimated by FLUKA. $= 1.3 \pm 0.4 \times 10^{-9}$ / proton $P_{BG}^{neutral} = 2.7 \pm 0.8 \times 10^{-9}$ / proton

D_s momentum reconstruction by Artificial Neural Network using topological variables

- Difficult to measure D_s momentum directly due to short lifetime
- D_s momentum reconstruction by topological \rightarrow variables
- A Neural Network with 4 variables was trained with MC events
- Momentum resolution for $\tau \rightarrow 1$ prong decays $\Delta p/p = 18\%$

٩

Double-decay topology events search

About 23% of the data sample processed with vertex search and decay search programs.

August 2021

Analyzed sample/Total	22.2%
Protons on tungsten plate	486,137,516
Vertices in tungsten	2,653,846
Double decay topology vertex candidates	17,574

Work now is focused on the software optimization and upgrade to make it faster and more efficient.

Kink

- IP of daughter 291.6 μm
- FL 2536.6 μm
- kink angle 118 mrad

Vee

- IP of daughters 20.9, 109.7 μm
- FL 554.5 μm
- opening angle 242 mrad

100 սm

New algorithm of small kink search

An event with 2 large kinks was selected in data sample

One of the kink parents has a small kink of 2.9 mrad.

Yu.Gornushkin, Lomonosov Conference 2021

Preparation for 2021 physics run

Beam time is schedule in Sep-Oct 2021 20% of full statistics (30% including the pilot run)

Scaled down due to COVID - 100 modules

schedule issue date: 28	-Apr-2021			Ve	rsion: 1.	0		хр. 📃	PS/SP	S Exp.	Ot	her Exp	. 🔲 I	NT
		Jun			Jul				Aug				1	Sep
Week	24	25	26	27	28	29	30	31	32	33	34	35	36	37
Machine														TS
T2 - H2		CMS OT (no beam) 7	SPS & TT20 Setup 7	NA Setup 7	NA61	SHINE	FASER cal 7	ATLAS FCAL PULSE 7	STORM	KLEVE	NA61	SHINE	ATLAS ZDC 7	н
T2 - H4			SPS & TT20 Setup 7	NA Setup 7	GIF RD51 (CMS ECAL) 9	CMS RCAL 1	LHCb (18	CAL		NA	64e		GIF 7	

Preparation for the main physics runs

New gel production facility

Larger film size 10x12.5 → 25 cm x 20 cm

Film production facility – 15 m² per day

Yu.Gornushkin, Lomonosov Conference 2021

Target mover for 2021-2022 runs

HTS (0.5 m²/h) \rightarrow HTS II (2.5 m²/h)

Summary and outlook

- Progress in nuclear emulsion readout made possible new generation of the experiments
- DsTau aims to measure double differential cross section of $D_s \rightarrow \tau$ production in proton-nuclei interactions to reduce uncertainty of tau neutrino flux in future experiments down to 10%.
- The analysis of the pilot run data is ongoing, very high track density requires upgrading software instruments and increasing computing resources.
- The physics run in September of 2021 is under preparation. Both hardware and software have been revised to meet very challenging experimental conditions.

DsTau paper: JHEP 01(2020)033 DsTau web site: https://na65.web.cern.ch/

Yu.Gornushkin, Lomonosov Conference 2021

Emulsion = a detector with high detection channel density

150 μm x 120 μm x 50 μ**m**

23

1.2x10⁸ channels (crystals) in this volume. 10¹⁴ channels in a film (12.5 cm x 10

High density of detection channels, O(10¹⁴) channels/cc, makes emulsion attractive for many purposes.

ATLAS-IBL pixel sensor **FE-14**

1 pixel =**250 μm x 50 μm x 200 μm** Sum of all channels in ATLAS = ~10⁸

Analysis scheme of double-kink search

Step 1

- Full area scanning by the fast scanning system
- Select decays with $\Delta \theta > 20$ mrad

Step 2

Precise measurement to detect Ds $\rightarrow \tau$ decay (a few mrad)

Dedicated high-precision systems (Bern, Dubna)

v_{τ} cross section measurement by oscillated neutrinos

Neutrino beam line in DONuT

Results from DONuT

v_{τ} CC cross section $\mathbf{\sigma}_{\mathbf{v}\tau}(E) = \mathbf{\sigma}_{\mathbf{v}\tau}^{const} \times E_{\mathbf{v}\tau} \times K_{\tau}(E)$

 v_{τ} CC cross section was calculated as a function of one parameter. The energy-independent part was parameterized as

$$\sigma_{v\tau}^{const} = 7.5(0.335\,n^{1.52}) \times 10^{-40}\,cm^2 GeV$$

where n is the parameter controlling the longitudinal part of the D_s differential cross section

Phenomenological formula

$$\frac{d^2\sigma}{dx_F dp_T^2} \propto (1 - |x_F|)^n \exp(-bp_T^2)$$

$$\lim_{\substack{l \in \mathbb{Z}^n \\ longitudinal \\ dependence}} \lim_{\substack{l \in \mathbb{Z}^n \\ longendence}} \lim_$$

0.8

, ^{9.0} K(E)

0.4

0.2

D

eynman x ($x_F = 2p^{CM}z/\sqrt{s}$) and ansverse momentum