Highlights of top quark measurements with the ATLAS experiment

Fabio Cardillo, on behalf of the ATLAS collaboration

20th Lomonosov Conference, 22.08.21

Introduction

- Measurements of processes involving top quarks are of major importance to check predictions of the SM and provide sensitivity to new physics beyond the SM (BSM).
- In the last years, the ATLAS experiment at the LHC performed precise measurements of the top quark properties and measured also "rare" SM processes associated with top quarks.
- Will present some of the most recent and relevant results released by the ATLAS collaboration in 2021 ⇒ full list can be found here.
- (I) Measurements of the inclusive and differential production cross sections of a *tt* pair in association with a *Z* boson at $\sqrt{s} = 13$ TeV with the ATLAS detector
- (II) Measurement of the *tttt* production cross section in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector
- (III) Measurements of differential cross-sections in *tt* events with a high p_T top quark and limits on BSM contributions to *tt* production with the ATLAS detector
- (IV) Measurement of the polarisation of single top quarks/antiquarks produced in the *t*-channel collected with the ATLAS detector at $\sqrt{s} = 13$ TeV and bounds on the *tWb* dipole operator

➡ ATLAS-CONF-2021-027

(I) Inclusive & differential *ttZ* cross sections

22.08.2021

ttZ: Introduction

Production of top quark pairs in association with a Z boson (*ttZ*):

- Rare process in the SM \Rightarrow around 1000 times smaller than *tt* only.
- Inclusive cross-section measurement was performed by ATLAS in 2019, but without using the full Run II dataset:
 - ► $\sigma_{ttZ} = 0.95 \pm 0.08$ (stat.) ± 0.10 (syst.) pb Phys. Rev. D 99 (2019) 072009
- Full Run II dataset (139 fb⁻¹) provides sufficient statistics to measure this process also differentially.
- Provides access to top-Z coupling \Rightarrow interesting in the context of effective field theory (EFT) interpretations.
- Important background for SM searches/measurements.
- Theory predictions exist at NLO+NNLL precision
 ⇒ see JHEP 08 (2019) 039, EPJC 80 (2020) 428.
- Leptonic and hadronic decay modes of the Z boson and tt system ⇒ different lepton multiplicities in final states.
 - Analysis regions based on multi-lepton signatures
 (3l, 4l) ⇒ highest sensitivities.

F. Cardillo

ttZ: Inclusive measurement

- Simultaneous maximum-likelihood fit WZ/ZZ+jets to obtain signal-strength parameter: $\mu_{ttZ} = \sigma_{\text{Data}}/\sigma_{\text{SM}}$.
 - Fit performed separately in 3*l*, 4*l* and combined 3l + 4l channels \Rightarrow consistent results.
 - Inclusive *ttZ* cross section is computed for specific fiducial phase-space, assuming on-shell decay of *Z* boson: 70 GeV $< m_{ll} < 110$ GeV.
 - Compatible with previous ATLAS result and latest CMS measurement in same fiducial phase-space ⇒ see JHEP 03 (2020) 056.

Channel	$\mu_{t\bar{t}Z}$
Trilepton	$1.17 \pm 0.07 \text{ (stat.)} {}^{+0.12}_{-0.11} \text{ (syst.)}$
Tetralepton	1.21 ± 0.15 (stat.) $^{+0.11}_{-0.10}$ (syst.)
Combination $(3\ell + 4\ell)$	$1.19 \pm 0.06 (\text{stat.}) \pm 0.10 (\text{syst.})$

arXiv:2103 12603

 $\sigma(pp \rightarrow t\bar{t}Z) = 0.99 \pm 0.05 \,(\text{stat.}) \pm 0.08 \,(\text{syst.}) \,\text{pb}$

Observed/predicted event yields in 3l/4l regions

Cardillo

ttZ: Differential measurements

- Differential cross-section measurements performed in nine observables probing the kinematics of the *ttZ* system.
- Absolute and normalised measurements (reduced systematics) ⇒ unfold to particle/parton-level using Iterative Bayesian Unfolding (see here).
- Evaluating compatibility between data and theoretical predictions by computing χ^2/ndf and *p*-values for differential distributions.
 - ► All *p*-values > 0.05 \Rightarrow largest tensions in p_T of *Z* boson and $\Delta \varphi$ between *Z* boson and *tt* system. *arXiv:2103.12603*

Cardillo

(II) Measurement of *tttt* cross section

F. Cardillo

22.08.2021

- ATLAS top-physics highlights

17

tttt: Introduction

Production of four top quarks (tttt):

- Very small expected cross section: $\sigma_{tttt} = 12 \pm 2.4$ fb (NLO EW+QCD) JHEP 02 (2018) 031
- Process sensitive to magnitude and CP properties of top-Higgs Yukawa coupling
- Also sensitive to BSM scenarios and EFT operators (e.g. modifying the four-fermion couplings).
- Similarly to *ttZ*, *tttt* events can give rise to various final states covering different lepton multiplicities.
- * Earlier published 2l (SS), 3l results: EPJC 80
 (2020) 1085 ⇒ recently combined with the results in the 1l, 2l (OS) channels.
- Multi-lepton channels have smaller background contaminations but lower branching ratio.
 - BR[2l (SS), 3l] = 13%, BR[1l, 2l (OS)] = 57%.

Cardillo

ATLAS-PHYS-PUB-2020-12

X

tttt: Analysis strategy

2l(SS)/3l analysis:

- Select 2l (SS) or 3l events and train boosted decision tree (BDT) to separate *tttt* from background.
- Use CRs for *ttW* and reducible background sources from fake/nonprompt leptons (e.g. heavy-flavour decays, γ-conversions).
- Apply binned maximum-likelihood fit to BDT score to determine μ_{tttt} and inclusive cross section.

Cardillo

1l/2l(OS) analysis:

- Use different regions with 1*l* or 2*l* (OS) selections, further separated by N_{jets} and N_{b-jets}.
 - Twelve regions in 1*l*, nine regions in 2*l* (OS) channel.
- All SRs have $N_{b-jets} \ge 3$, $N_{jets} \ge 7$.
- Use binned fit to different variables to extract μ_{tttt} .
 - **BDT** score in SRs & H_T in CRs.

l. background sources from fake/r our decays, γ-conversions).

Events /

10⁴

 10^{3}

10

SR

Pre-Fit

__ √s = 13 TeV, 139 fb⁻¹

BDT scores in the 2l(SS)/3l, 1l and 2l(OS) channels

EPJC 80 (2020) 1085

Low m_{u*}

Uncertainty

Others

∎tīZ

HF μ

ttt

Mat. Conv. HF e

Q mis-id

∏tī₩

∎tīH

tttt: Results and combination of channels

$$\sigma_{t\bar{t}t\bar{t}} = 24 \pm 4 \text{ (stat.)}_{-4}^{+5} \text{ (syst.) fb} = 24_{-6}^{+7} \text{ fb}$$

- Most relevant systematics in the two analysis are different ⇒ limited impact of systematics correlations.
- Higher precision in $2l (SS)/3l \Rightarrow$ dominates combined result.

Cross section ≈ 2 times larger than SM expectation, but within two standard deviations consistent with the latest CMS results ⇒ see EPJC 80 (2020) 75.

22.08.2021

(III)

Differential *tt* cross sections with high top *p*_T

F. Cardillo

22.08.2021

- ATLAS top-physics highlights

Boosted tt analysis:

- Targeting high p_T ("boosted") semi-leptonic *tt* events \Rightarrow selecting one lepton (electron/muon) and an hadronically decaying top quark with $p_T > 355$ GeV.
- Some EFT operators and BSM scenarios expect deviations from SM for large p_T or high m_{tt} .
- The *tt* system is fully reconstructed from the final state particles (using also large-*R* jets for unresolved top decays).
- Inclusive/differential cross sections already measured by ATLAS in 2019, but without full Run II data and EFT interpretations ⇒ see EPJC 79 (2019) 1028.
- Background processes (non-*tt*) with at least one real lepton estimated from MC (mostly *tW*). Multi-jet (0*l*) estimated via matrix method (see here).
- Significant impact of jet energy scale uncertainty on results.
 - Reduced by deriving custom jet energy scale factors (JSF) to be applied on top of the standard ATLAS calibration, based on matching between top mass (mass of top-tagged jet) in data and MC.

Cardillo

Best data/MC agreement for JSF = 1.0035 ± 0.00087 .

 $m_{j^{top}}$ in MC for different JSF values

tt-boosted: Differential measurement

- Measure differential cross sections for several observables sensitive to kinematics of top quarks and parton shower/radiation effects.
- Differential distributions unfolded to particle-level via Iterative Bayesian Unfolding (see *ttZ* analysis).
- Check compatibility with data (based on χ^2/ndf) for several parton shower algorithms and FSR/ISR variations in the MC generators.

Cardillo

• Use sum of bins for inclusive fiducial cross section:

 $\sigma_{tt} = 1.267 \pm 0.005 \text{ (stat.)} \pm 0.053 \text{ (syst.) pb}$

tt-boosted: Interpretations

- Inclusive fiducial cross section shows best agreement with data for MC predictions for POWHEG and MADGRAPH5 with NNLO(QCD)+NLO(EW) reweighing at parton level.
- Using differential distribution of hadronic top quark p_T to derive limits on two Wilson coefficients modifying the top-*g* and top-*q* couplings: $C_{tq}^{(8)}$, C_{tG} ATLAS-CONF-2021-31

ATLAS Preliminary

√s = 13 TeV, 139 fb⁻¹

Stat. unc.

Stat.+Syst. unc.

◆ More stringent limits on $C_{tq}^{(8)}$ than latest global SMEFT result ⇒ see *arXiv:2105.00006*.

(IV) Single-top polarisation measurement

F. Cardillo

22.08.2021

- ATLAS top-physics highlights

Single-top polarisation: Analysis motivation

Top-polarisation measurement in single top:

- Perform first cut-based fiducial measurement of the single top-quark polarisation in with full Run II dataset.
- Focus on single top quarks/antiquark production via exchange of virtual W boson in t-channel \Rightarrow producing a top quark/antiquark and a recoiling light-flavour quark q ("spectator quark").
- Top quarks/antiquarks are polarised due to vector-axial vector (V-A) form of the *tWb* vertex ⇒ spin aligned to down-type quarks.

* Selecting ll + jets events: top polarisation vector accessible from angular variables of the lepton in the top quark rest frame $\cos \theta_{lx'}$, $\cos \theta_{ly'}$, $\cos \theta_{lz'} \Rightarrow \sec Phys. Rev. D. 89 (2014) 114009$.

Single-top polarisation: Differential measurements

- * Lepton angular variables in top rest frame $\{\cos \theta_{lx'}, \cos \theta_{ly'}, \cos \theta_{lz'}\}$ allow to determine polarisation vector $P = \{P_{x'}, P_{y'}, P_{z'}\}$ of top quark/antiquarks from a likelihood minimisation (after selecting events in SR).
- Differential cross section measurement of angular variables.
 - Unfolded to particle-level and compared to the predictions of different MC generators and parton shower algorithms (e.g. POWHEG+PY8, POWHEG+H7, MADGRAPH5+PY8).

Particle-level distributions of $\cos\theta_{lx'}$ (left), $\cos\theta_{ly'}$ (middle), $\cos\theta_{lx'}$ (right)

Single-top polarisation: Results and interpretations

- Can set limits () on the $\{P_{x'}, P_{z'}\}$ components of the top/ antitop polarisation vector.
 - ▶ $P_{x'} = 0.01 \pm 0.18$, $P_{z'} = 0.91 \pm 0.10$ (top).
 - ▶ $P_{x'} = -0.02 \pm 0.20$, $P_{z'} = -0.79 \pm 0.16$ (anti top).
 - In agreement with the NLO MC prediction from POWHEG+PYTHIA8 (★).
- Can also constrain two Wilson coefficients which modify the *tW* coupling: C_{tW}, C_{itW}.
 - Best-fit values are (within 68% CL) in agreement with SM expectation ($C_{tW} = C_{itW} = 0$).
 - So far, most stringent simultaneously derived limits on *C_{tW}* and *C_{itW}*.

ATLAS-CONF-2021-027

	Ct	W	C_{itW}				
	$68\% \ \mathrm{CL}$	$95\%~{ m CL}$	$68\% \ \mathrm{CL}$	$95\%~{ m CL}$			
All terms	[-0.2, 0.9]	[-0.7, 1.5]	[-0.5, -0.1]	[-0.7, 0.2]			
Order $1/\Lambda^4$	[-0.2, 0.9]	[-0.7, 1.5]	[-0.5, -0.1]	[-0.7, 0.2]			
Order $1/\Lambda^2$	[-0.2, 1.0]	[-0.7, 1.7]	[-0.5, -0.1]	[-0.8, 0.2]			

Cardillo

- Presented four of the most recent ATLAS measurements on top quark related processes (most results released in the last 2-3 months).
 - Measurement of inclusive and differential ttZ cross sections in 3*l* and 4*l* final states \Rightarrow arXiv:2103.12603.
 - Measurement of the *tttt* production cross section in 1l/2l (OS) and 2l (SS)/3l channels \Rightarrow arXiv:2106.11683.
 - Differentials and inclusive cross section measurements of *tt* events with high p_T top quarks \Rightarrow *ATLAS-CONF-2021-31*.
 - Measurement of top quark/antiquark polarisation in single top events
 ⇒ ATLAS-CONF-2021-027.

F. Cardillo

 Further interesting results on top physics in ATLAS can be found on the "Top Public Results" webpage of the ATLAS collaboration (see here).

Thanks a lot for your attention!

Backup

F. Cardillo

22.08.2021

- ATLAS top-physics highlights

ttZ analysis: Background estimation

- More a Dominated by WZ + jets (3l) and ZZ + jets (4l) ⇒ using control regions to constrain backgrounds (only light-jet components).
 - Normalisations for WZ/ZZ + light-jets free fit parameters. WZ/ZZ + b/c-jets fixed to MC prediction (but extra unc.).
- Data-driven matrix-method for fake/non-prompt lepton background.
 - Fake-lepton prediction validated in 3*l* region with Z-veto ⇒ up to 60% fake leptons.
- Smaller SM backgrounds (e.g. *tt+W/H*, *tZq*, *tWZ*) estimated purely from MC (all < 7%).</p>

Cardillo

arXiv:2103.12603

ttZ analysis: Systematic uncertainties

Most relevant systematics:

- All detector-related uncertainties (JES/JER, b-tag, lepton SF etc.) considered.
- *ttZ* parton-shower (& underlying event):
 - Comparison of nominal *ttZ* MC (MADGRAPH5 + PYTHIA8) vs. MADGRAPH5 + HERWIG7.
- *tWZ* modelling:
 - Comparison of different diagram removal schemes: DR1 vs. DR2 (see here).
- WZ/ZZ + jets modelling:
 - > $\mu_{\rm F}$, $\mu_{\rm R}$ variations & normalisation uncertainties.
 - Extra 50% (30%) for WZ/ZZ + b(c)-jet components \Rightarrow obtained from Z + b events (2*l*).

arXiv:2103.12603

Uncertainty	$\Delta \sigma_{t\bar{t}Z} / \sigma_{t\bar{t}Z}$ [%]
$t\bar{t}Z$ parton shower	3.1
tWZ modelling	2.9
<i>b</i> -tagging	2.9
WZ/ZZ + jets modelling	2.8
tZq modelling	2.6
Lepton	2.3
Luminosity	2.2
Jets + $E_{\rm T}^{\rm miss}$	2.1
Fake leptons	2.1
$t\bar{t}Z$ ISR	1.6
$t\bar{t}Z \ \mu_{\rm f}$ and $\mu_{\rm r}$ scales	0.9
Other backgrounds	0.7
Pile-up	0.7
$t\bar{t}Z$ PDF	0.2
Total systematic	8.4
Data statistics	5.2
Total	10

ttZ analysis: Compatibility of differential results

- Can evaluate the compatibility between data and the theoretical predictions by computing χ^2/ndf and *p*-values for differential distributions.
 - Checked for different *ttZ* generators, as well as hand-made theory calculations at NLO, NLO+NNLL and nNLO precisions ⇒ see JHEP 08 (2019) 039.
 - ► All *p*-values > 0.05 ⇒ largest tensions in $p_T(Z)$, $p_T(l^{\text{non-}Z})$, $\Delta \phi(Z, t_l)$ and $\Delta \phi(tt, Z)$.
 - NLO+NNLL predictions for $p_T(Z)$ seem to show improved agreement.

F. Cardillo

arXiv:2103.12603

		le	u	lte	sed	0	MG5_aMG	C@NLO 2.3.3	MG5_aMC@NLO 2.3.3		Sherpa 2.2.1		Sherpa 2.2.1		Additional			
		artic	Parto	hsolı	'mali		mali. Tigur		+ P:	ythia 8	+ H1	erwig 7	NLO m	ulti-leg	NLO in	nclusive	The	eory
	Variable	H		A	Noi		χ^2/ndf	<i>p</i> -value										
	p_{T}^{Z}	\checkmark		\checkmark		9(a)	12.8/7	0.08	12.0/7	0.10	11.6/7	0.11	12.1/7	0.10	/	/		
4ℓ	p_{T}^{Z}		\checkmark	✓		9(b)	12.8/7	0.08	11.7/7	0.11	11.2/7	0.13	11.3/7	0.13	10.4/7	0.17		
, + J	p_{T}^{Z}	\checkmark			\checkmark	10(a)	11.0/6	0.09	10.8/6	0.09	10.6/6	0.10	10.7/6	0.10	/	/		
<i>(</i> 1)	p_{T}^{Z}		\checkmark		\checkmark	10(b)	11.0/6	0.09	10.8/6	0.10	10.7/6	0.10	10.6/6	0.10	10.5/6	0.11		
	$ y^{Z} $		\checkmark	\checkmark		11(a)	2.8/8	0.95	2.9/8	0.94	4.0/8	0.85	2.7/8	0.95	2.9/8	0.94		
	Njets	\checkmark		\checkmark		12(a)	0.8/3	0.85	0.6/3	0.90	0.3/3	0.95	0.5/3	0.92	/	/		
3ℓ	$p_{\mathrm{T}}^{\ell,\mathrm{non-}Z}$		\checkmark	\checkmark		13(a)	7.6/4	0.11	8.8/4	0.07	8.3/4	0.08	8.6/4	0.07	/	/		
	$ \Delta \phi(Z,t_{\rm lep}) $		\checkmark	\checkmark		13(b)	5.5/3	0.14	5.8/3	0.12	5.2/3	0.16	6.9/3	0.07	6.6/3	0.09		
	$ \Delta y(Z,t_{\rm lep}) $		\checkmark	\checkmark		14(a)	0.9/3	0.82	0.7/3	0.88	0.2/3	0.98	0.5/3	0.92	0.3/3	0.96		
	Njets	\checkmark		\checkmark		12(b)	1.4/4	0.84	1.7/4	0.79	2.8/4	0.59	2.8/4	0.59	/	/		
4 <i>C</i>	$ \Delta \phi(\ell_t^+,\ell_{\bar{t}}^-) $		\checkmark	\checkmark		14(b)	2.1/4	0.72	2.3/4	0.69	2.7/4	0.62	2.6/4	0.63	/	/		
И	$ \Delta \phi(t\bar{t},Z) $		\checkmark	\checkmark		15(a)	5.2/3	0.16	4.7/3	0.19	3.5/3	0.32	3.4/3	0.33	4.9/3	0.18		
	$p_{\mathrm{T}}^{tar{t}}$		\checkmark	\checkmark		15(b)	3.5/4	0.47	3.6/4	0.47	3.5/4	0.48	3.5/4	0.47	4.6/4	0.33		

tttt analysis: Background estimation in 21(SS)/31 channel

- Use CRs for *ttW* and non-prompt electrons/muons originating from heavy-flavour (HF) decays and electrons from γconversions.
- Obtain normalisation factors (NFs) for these background components together with μ_{tttt} from simultaneous fit in all SRs/CRs.
 - Corrected MC is used for SM background prediction in SRs.

Parameter	$NF_{t\bar{t}W}$	NF _{Mat. Conv.}	$NF_{Low m_{\gamma^*}}$	NF _{HF} e	$\rm NF_{\rm HF}\mu$
Value	1.6 ± 0.3	1.6 ± 0.5	0.9 ± 0.4	0.8 ± 0.4	1.0 ± 0.4

Cardillo

EPJC 80 (2020) 1085

tttt analysis: Fit regions in 1/2l(OS)

- Signal and control regions are categorised by N_{jets} and N_{b-jets} in 1*l* and 2*l* (OS) channels.
 - All SRs have high jet multiplicities and $\geq 3 b$ -jets (\blacksquare).
 - Regions with = 3 b-jets and lower jet multiplicities (•) are used as CRs to fit tt+jets, separated by jet-flavour: tt+light, tt+b, tt+c.
 - ► Total *tt* is reweighed to data in regions with = 2 *b*-jets (■) as a function of different kinematic variables.

N_{jet} in one of the 3b CR: pre-fit (left) and post-fit (right)

Cardillo

SRs/CRs in 1l and 2l(OS) channel

tttt analysis: Systematic uncertainties

- The nuisance parameters ranked according to their post-fit impacts on the best-fit value of μ_{tttt} in the 1l/2l (OS) channel (left) and the 2l (SS)/3l channel (right).
- Besides the *tttt* cross section uncertainty, different uncertainty sources are dominant for the two channels ⇒ no strong correlations.

Fit in 1l/2l(OS)

Cardillo

Fit in 2l(SS)/3l

Cross section summary plots

* Summary of ATLAS and CMS measurements of tt+X, X = W, Z, γ (left) and tttt (right) cross sections at $\sqrt{s} = 13$ TeV.

ATLAS-PHYS-PUB-2021-013

tt-boosted analysis: JSF correction

- Custom correction factors to the jet energy scale (JSF) are applied to reduce the default ATLAS JES uncertainties.
 - Left: the distribution of m_j top-tagged for three example values of the JSF.

Cardillo

- Middle: the mean of the same distribution as a function of JSF and a linear fit to the simulated samples \Rightarrow best agreement with data for JSF = 1.0035 ± 0.00087 .
- Right: the m_j distribution observed in data compared to the expected signal and background processes for JSF = 1.

ATLAS-CONF-2021-31

tt-boosted analysis: Systematic uncertainties and EFT impact

- Breakdown of systematic uncertainties for the inclusive measurement (left) and the differential result, binned in the top quark p_T (top right).
 - Dominant uncertainties: *b*-tagging, hadronisation modelling and luminosity.

Source	Uncertainty [%]	Uncertainty [%] (no JSF)
Statistical (data)	± 0.4	±0.4
JSF statistical (data)	± 0.4	—
Statistical (MC)	± 0.2	± 0.1
Hard scatter	± 0.5	± 0.8
Hadronisation	± 2.0	± 1.8
Radiation (IFSR + h_{damp})	$^{+1.0}_{-1.6}$	$^{+1.4}_{-2.3}$
PDF	± 0.1	± 0.1
Top-quark mass	$^{+0.8}_{-1.1}$	± 0.1
Jets	± 0.7	± 4.2
b-tagging	± 2.4	± 2.4
Leptons	± 0.8	± 0.8
$E_{\mathrm{T}}^{\mathrm{miss}}$	± 0.1	± 0.1
Pileup	± 0.4	± 0.0
Luminosity	± 1.8	± 1.8
Backgrounds	± 0.7	± 0.6
Total systematics	$+4.1 \\ -4.3$	$+5.8 \\ -6.0$
Total	$+4.1 \\ -4.3$	$+5.8 \\ -6.0$

ATLAS-CONF-2021-31

Cardillo

• Impact of the operators $C_{tq}^{(8)}$, C_{tG} on the particle-level distribution of the top p_{T} .

tt-boosted analysis: Compatibility of differential results

- Can evaluate the compatibility between data and the theoretical predictions by computing χ^2/ndf and *p*-values for differential distributions.
 - Checked for different MC generators setups (variation of parton-shower algorithm and ISR/FSR).
 - ▶ Predictions from POWHEG and MADGRAPH5 exist also with extra NNLO(QCD)+NLO(EW) reweighing at parton-level ⇒ better agreement with data in most cases.

ATLAS-CONF-2021-31

Observable	PWG	+PY8	PWG+PY8	(NNLO WEIGHT)	MC@NLO+PY8		MC@NLO+PY8(NNLO weight)		PWG+H7		PWG+H7(NNLO weight)	
	χ^2 /NDF	<i>p</i> -value	χ^2 /NDF	<i>p</i> -value	χ^2 /NDF	<i>p</i> -value	χ^2 /NDF	<i>p</i> -value	χ^2 /NDF	<i>p</i> -value	χ^2 /NDF	<i>p</i> -value
$p_{\mathrm{T}}^{\mathrm{top_{had}}}$	26/8	< 0.01	5/8	0.79	18/8	0.03	4/8	0.85	7/8	0.56	3/8	0.94
$p_{\mathrm{T}}^{\mathrm{top}_{\mathrm{lep}}}$	78/8	< 0.01	28/8	< 0.01	144/8	< 0.01	10/8	0.27	43/8	<0.01	18/8	0.02
$p_{\mathrm{T}}^{tar{t}}$	162/7	< 0.01	46/7	< 0.01	171/7	< 0.01	22/7	<0.01	122/7	<0.01	39/7	< 0.01
$H_{ m T}^{tar{t}+{ m jets}}$	36/7	< 0.01	7/7	0.42	17/7	0.02	23/7	<0.01	21/7	<0.01	12/7	0.10
$H_{ m T}^{tar{t}}$	86/10	< 0.01	37/10	< 0.01	110/10	< 0.01	16/10	0.10	47/10	<0.01	28/10	< 0.01
$ y^{top_{had}} $	47/17	<0.01	27/17	0.06	37/17	<0.01	23/17	0.15	30/17	0.03	26/17	0.07
$ y^{top_{lep}} $	40/14	<0.01	17/14	0.26	29/14	0.01	12/14	0.58	28/14	0.01	19/14	0.16
$ y^{t\overline{t}} $	30/10	<0.01	8/10	0.58	23/10	0.01	6/10	0.81	14/10	0.19	7/10	0.74
$m^{t\bar{t}}$	52/10	<0.01	24/10	< 0.01	81/10	< 0.01	7/10	0.74	29/10	<0.01	22/10	0.02
$p_{\mathrm{T}}^{\mathrm{extra}_{1}}$	115/15	<0.01	38/15	< 0.01	413/15	<0.01	194/15	<0.01	143/15	<0.01	69/15	< 0.01
$p_{\mathrm{T}}^{\mathrm{extra}_2}$	46/9	<0.01	19/9	0.02	25/9	<0.01	74/9	<0.01	42/9	<0.01	29/9	< 0.01
$N^{extrajets}$	32/5	<0.01	12/5	0.03	76/5	<0.01	78/5	<0.01	57/5	<0.01	62/5	< 0.01
$\Delta \phi(\text{extra}_1, \text{top}_{\text{had}})$	17/9	0.05	8/9	0.53	150/9	<0.01	80/9	<0.01	42/9	<0.01	30/9	< 0.01
$\Delta \phi(\text{extra}_2, \text{top}_{\text{had}})$	8/9	0.56	5/9	0.84	8/9	0.57	25/9	<0.01	85/9	<0.01	76/9	< 0.01
$\Delta \phi(b_{\text{lep}}, \text{top}_{\text{had}})$	95/13	< 0.01	34/13	< 0.01	145/13	<0.01	16/13	0.23	52/13	<0.01	25/13	0.02
$\Delta \phi(\text{top}_{\text{lep}}, \text{top}_{\text{had}})$	111/5	<0.01	36/5	< 0.01	134/5	<0.01	82/5	<0.01	90/5	<0.01	36/5	< 0.01
$\Delta \phi(\text{extra}_1, \text{extra}_2)$	24/11	0.01	16/11	0.13	31/11	<0.01	69/11	<0.01	237/11	<0.01	215/11	< 0.01
$m(\text{extra}_1, \text{top}_{\text{had}})$	50/12	< 0.01	20/12	0.06	221/12	< 0.01	48/12	<0.01	41/12	<0.01	19/12	0.08
$p_{\rm T}^{{\rm extra}_1}$ vs $N^{extrajets}$	355/21	< 0.01	205/21	< 0.01	633/21	< 0.01	316/21	<0.01	263/21	<0.01	159/21	< 0.01
$p_{\mathrm{T}}^{\mathrm{extra}_{1}}$ vs $p_{\mathrm{T}}^{\mathrm{top}_{\mathrm{had}}}$	115/17	<0.01	53/17	< 0.01	383/17	<0.01	152/17	<0.01	121/17	<0.01	74/17	< 0.01
$\Delta \phi(\text{extra}_1, \text{top}_{\text{had}}) \text{ vs } p_{\text{T}}^{\text{top}_{\text{had}}}$	69/21	<0.01	43/21	< 0.01	427/21	<0.01	223/21	<0.01	78/21	<0.01	60/21	< 0.01
$\Delta \phi(\text{extra}_1, \text{top}_{\text{had}}) \text{ vs } N^{extrajets}$	109/19	<0.01	64/19	< 0.01	545/19	<0.01	250/19	<0.01	85/19	<0.01	60/19	< 0.01

F. Cardillo

Single-top polarisation: Systematic uncertainties

- * Left: extracted values for the different components of the top quark/antiquark polarisation vectors $P = \{P_{x'}, P_{y'}, P_{z'}\}$, together with background normalisations from the CRs.
- Right: statistical and systematic uncertainties (grouped by categories) in the measurement of the polarisation-components for top quarks/antiquarks.

F. Cardillo

Parameter	Extracted value	(stat.)
<i>t</i> -channel norm.	$+1.045 \pm 0.022$	(± 0.006)
W+jets norm.	$+1.148 \pm 0.027$	(± 0.005)
$t\bar{t}$ norm.	$+1.005 \pm 0.016$	(± 0.004)
$P^t_{x'}$	$+0.01\pm0.18$	(± 0.02)
$P^{ar{t}}_{x'}$	-0.02 ± 0.20	(± 0.03)
$P_{y'}^t$	-0.029 ± 0.027	(± 0.011)
$P^{ar{t}}_{y'}$	-0.007 ± 0.051	(± 0.017)
$P_{z'}^t$	$+0.91\pm0.10$	(± 0.02)
$P^{\overline{t}}_{z'}$	-0.79 ± 0.16	(± 0.03)

Uncertainty source	$\Delta P_{x'}^t$	$\Delta P^{\bar{t}}_{x'}$	$\Delta P_{y'}^t$	$\Delta P_{y'}^{\bar{t}}$	$\Delta P_{z'}^t$	$\Delta P^{\bar{t}}_{z'}$
Modelling						
Modelling (<i>t</i> -channel)	± 0.037	± 0.051	± 0.010	± 0.015	± 0.061	± 0.061
Modelling $(t\bar{t})$	± 0.016	± 0.021	± 0.004	± 0.016	± 0.003	± 0.016
Modelling (other)	± 0.013	± 0.031	± 0.003	± 0.006	± 0.026	± 0.043
Experimental						
Jet energy scale	± 0.045	± 0.048	± 0.005	± 0.007	± 0.033	± 0.025
Jet energy resolution	± 0.166	± 0.185	± 0.021	± 0.040	± 0.070	± 0.130
Jet flavour tagging	± 0.004	± 0.002	< 0.001	± 0.001	± 0.007	± 0.009
Other experimental uncertainties	± 0.015	± 0.029	± 0.002	± 0.007	± 0.014	± 0.026
Multijet estimation	± 0.008	± 0.021	< 0.001	± 0.001	± 0.008	± 0.013
Luminosity	± 0.001	± 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Simulation statistics	± 0.020	± 0.024	± 0.008	± 0.015	± 0.017	± 0.031
Total systematic uncertainty	± 0.174	± 0.199	± 0.025	± 0.048	± 0.096	± 0.153
Total statistical uncertainty	± 0.017	± 0.025	± 0.011	± 0.017	± 0.022	± 0.034

ATLAS-CONF-2021-027

Single-top polarisation: Data-compatibility and EFT impact

* Compatibility between the SM prediction and data for the unfolded differential distributions of $\cos \theta_{lx'}$, $\cos \theta_{ly'}$ and $\cos \theta_{lz'}$ (χ^2 /ndf and *p*-values).

Angular variable	χ^2/NDF	<i>p</i> -value
$\cos heta_{\ell x'}$	1.53/7	0.98
$\cos heta_{\ell y'}$	4.25/7	0.75
$\cos heta_{\ell z'}$	2.98/3	0.39

• Impact of C_{tW} and C_{itW} on the unfolded spectra of $\cos \theta_{lx'}$ and $\cos \theta_{ly'} \Rightarrow$ the particle-level prediction from the SM (\blacksquare) can be compared to the result from the best-fit values of C_{tW} and C_{itW} (\blacksquare).

Particle-level distributions of $\cos \theta_{lx'}$ (left) ad $\cos \theta_{ly'}$ (right)

Cardillo