

ALICE physics highlights and perspectives

Luciano Musa (CERN)

20th Lomonosov Conference

Moscow, 19 - 25 August 2021

Mikhail Lomonosov (1711 – 65)

Outline

- ① Introduction
- ② Physics highlights
- ③ Preparations for Run 3
- ④ Future perspectives

Outline

- $\textcircled{1} \quad Introduction$
- ② Physics highlights
- ③ Preparations for Run 3
- ④ Future perspectives

Other ALICE talks at this conference

Igor Altsybeev	Overview of recent ALICE results on particle correlations and fluctuations	19.08.A 🗸
Tatiana Karavicheva	ALICE upgrade overview for Run 3 and 4 at the CERN LHC	19.08.A 🗸
Dmitry Blau	Overview of direct photon and neutral mesons measurements with ALICE at the LHC	23.08.C
Viktor Riabov	Recent results on light flavor hadron production in the ALICE experiment at the LHC	23.08.C
Valeri Pozdniakov	Recent results on ultra-peripheral collision studies with ALICE at LHC	23.08.C
Artem Isakov	Analysis of b jets production in pPb and pp at $\sqrt{s_{NN}} = 5$ TeV with ALICE	23.08.C

The ALICE Collaboration

42 Countries, 173 Institutes 1946 Members about **1000 signing authors**

Russia in ALICE

- 174 members
- 94 authors
- 39 Ph.D. scientists

The ALICE detector (version 1: Run 1 + Run 2)

ALICE data taking and publications

System	Year(s)	√s _{NN} (TeV)	L _{int}
Pb-Pb	2010, 2011 2015, 2018	2.76 5.02	~75 μb⁻¹ ~800 μb⁻¹
Xe-Xe	2017	5.44	~0.3 µb⁻¹
p-Pb	2013 2016	5.02 5.02, 8.16	~15 nb⁻¹ ~3 nb⁻¹, ~25 nb⁻¹
рр	2009-2013 2015, 2017 2015-2018	0.9, 2.76, 7, 8 5.02 13	~200 mb ⁻¹ , ~100 nb ⁻¹ ~1.5 pb ⁻¹ , ~2.5 pb ⁻¹ ~1.3 pb ⁻¹ ~36 pb ⁻¹
Run 1	Run 2		

352 ALICE papers on arXiv so far

http://alice-publications.web.cern.ch/submitted

A few physics highlights ... focus on new results

Initial

state

Focal point of the experiment: characterize the QGP

- Explore the deconfined phase of QCD matter
 ⇒ quark-gluon plasma
- LHC Pb-Pb \Rightarrow large energy density (initial $\varepsilon > 15 \text{ GeV/fm}^3$) & large volume (~5000 fm³)

Hard

collisions

- Initial stage
- Macroscopic properties

Time

• Colour deconfinement

- Parton interactions
- Expansion dynamics
- Hadronic phase

- Light flavour (including light-nuclei) production
- Heavy flavour production
- Quarkonia
- Photons, low-mass dileptons
- Jets
- Ultra Peripheral Collisions

8

Coherent J/ ψ photoproduction in Pb-Pb ultra peripheral collisions

L. Musa (CERN) – 20th Lomonosov Conference - 22 August 2021

New measurment probing low-x gluon nuclear PDFs

- Comparison with the impulse approximation (no nuclear effects) allows for extraction of the gluon shadowing factor: $R_g \sim 0.65$ at $x \sim 10^{-3}$
- **First measurement** of t-dependence: sensitive to transverse gluon distribution talk V. Posdniakov

9

Neutral pion spectra over 3 orders of magnitude in $\ensuremath{p_{T}}$

Neutral pions measured from $p_T = 0.3$ to 200 GeV/c, with photon conversion and EM calorimeters

- p-Pb collisions: nuclear modification of parton distribution functions:
 - \Rightarrow Low p_T : Rp-Pb < 1 due to nuclear shadowing High p_T : no significant modification

J/ψ dissociation and (re)generation at the LHC

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{dN/dp_T|_{PbPb}}{dN/dp_T|_{pp}}$$

suppression by screening in the QGP

- At low p_T, modification decreases from forward to central rapidity
- reflects rapidity dependence of the cc̄ cross-section (➡ regeneration probability)

- Screening induces a strong suppression of Y production, which is flat vs $p_T \Rightarrow$ recombination effects small
- Y(2S) (first time!) at forward rapidity a suppression stronger wrt Y(1S) consistent with lower binding energy
- Hint of a decrease of the RAA at large rapidity not described by models

Energy loss and hadronization of c and b quarks in the QGP (1) Less suppression for (non-prompt) D mesons from B decays than prompt D mesons $D^0 R_{AA}$ consistent

- Quarks and gluons lose energy while traversing the QGP (R_{AA} < 1)
- Energy loss predicted to depend on QGP density, but also on quark mass
- "Dead cone effect" reduces gluon radiation for high-mass quarks

radiation suppressed for $\theta_{\rm C} < m_{\rm Q}/E$

- Also note: first measurement of D meson production down to zero p_T in Pb-Pb
- More precise measurement with new ITS in Run 3

Energy loss and hadronization of c and b quarks in the QGP (3)

 R_{AA} (non-prompt D⁺_s) > R_{AA} (non-prompt D⁰) consistent with coalescence picture

t D^0).in hipp with Q^0 less cappes bid then non-prompt D^0 at low p_T

• enhanced production of B_s^0 from beauty hadronization via coalescence (50% of D_s^+ from B_s^0) B_s^0

IIII K[±]

L. Musa (CERN) – 20th Lomonosov Conference - 22 August 2021

Direct observation of the dea

by measuring D⁰-meson tagged jets ir (pp 13 TeV)

Follow a heavy quark through the primary Luna Plane & suppress hadronization effects/non pert. (at small K_T)

Ratio of the splitting angle (θ) distributions for D⁰meson tagged jets and inclusive jets, in bins of E_{radiator}

Eradiator=energy of the splitting

prong at each declustering step

$R(\theta) = \frac{1}{N^{D^0 \text{ jets}}} \frac{\mathrm{d}n^{D^0 \text{ jets}}}{\mathrm{d}\ln(1/\theta)} \Big/ \frac{1}{N^{\text{inclusive jets}}} \frac{\mathrm{d}n^{\text{inclusive jets}}}{\mathrm{d}\ln(1/\theta)}$

Radiation suppressed in the expected angular region (shaded)

Suppression lifted as mass_Q << E_{radiator}

arXiv: 2106.05713 [nucl-ex]

Charm baryon/meson measurements in pp collisions

- unique measurements (at low-momenta) of $\Lambda_{\rm c}$ (also $\Xi_{\rm c}$ and $\Omega_{\rm c})$
- cross section (fragmentation fraction) larger than expected (ee and ep)

Charm baryon/meson measurements in pp collisions

Charm hadronization differs at the LHC

- unique measurements (at low-momenta) of $\Lambda_{\rm c}$ (also $\Xi_{\rm c}$ and $\Omega_{\rm c})$
- cross section (fragmentation fraction) larger than expected (ee and ep)

Strong interaction between hadrons

 $\overline{p_{a}}$

 p_{b}

Correlation function sensitive to interaction potential

talk I. Altsybeev

Emission source Two-particle wave function

1. Fix source geometry

2. Measure correlation fct. C(k^{*})

 \rightarrow study the strong interaction

Strong interaction between hadrons

ALICE measurements on topic

Phys. Rev. C 99 (2019) 024001	р-р, р-Л, Л–Л (рр)
Phys. Lett. B 797 (2019) 134822	$\Lambda{-}\Lambda$ (p-Pb)
Phys. Rev. Lett. 123 (2019) 112002	p-Ξ [_] (p-Pb)
Phys. Rev. Lett. 124 (2020) 092301	р-К (рр)
Phys. Letters B 805 (2020) 135419	p-Σ (pp)
Phys. Lett. B 811 (2020) 135849	source size in pp
Nature 588 (2020) 232-238	p-Ω (pp)
arXiv:2104.04427	N Λ – N Σ (pp)
arXiv: 2105.05578	р-ф (рр)
arXiv:2105.05683	K-p (Pb-Pb)
arXiv:2105.05190	p-/p, p-/ Λ , Λ -/ Λ (pp)

Proton-hyperon (p-Y) strong interaction poorly known

precise measurement of strong interaction for $p\mathcal{P}\mathcal{E}\mathcal{P}^-$ and $p\mathcal{O}\mathcal{O}\mathcal{P}$

- o direct comparison to lattice QCD
- $p-\Xi^-$ important for the EoS of neutron stars (which contain hyperon-rich matter)

"Unveiling the strong interaction among stable and unstable"

Nature 588 (2020) 232-238

Upgrade activities for Run 3 and Run 4 ALICE version 2.0

ALICE Detector Version 2.0 (Upgrades for Run 3+)

AITCF

- From LoI to last TDR: 2013 2015 🗸
- Construction: 2016 2019 🗸
- Installation: 2020 2021

ALICE

Muon Forward Tracker

- Global commissioning: ongoing

L. Musa (CERN) – 20th Lomonosov Conference - 22 August 2021

ALICE Detector Version 2.0 (Upgrades for Run 3+)

talk T. Karavicheva

Runs 1 and 2: 1 nb⁻¹ of Pb-Pb collisions Interaction rate ~8 kHz ITS Inner Tracking System TPC | Time Projection Chamber readout rate $\approx 1 \text{ kHz}$ TRD | Transition Radiation Detector TOF | Time Of Flight EMCal | Electromagnetic Calorimeter LS2 upgrade PHOS / CPV | Photon Spectrometer **New** TPC R/O planes HMPID High Momentum Particle 10 Identification Detecto MFT Muon Forward Tracker **New** silicon tracker (ITS & MFT) FIT | Fast Interaction Trigger **New** Fast Interaction Trigger (FIT) Muon Spectrometer ZDC Zero Degree Calorimeter **New** Online/Offline system (**O2**) **Upgrade readout** of all other detectors

> Improve tracking resolution at low p_{T}

x50 statistics increase for most observables

Run 3+Run 4: **13 nb**⁻¹ **of Pb-Pb collisions** readout rate ≈ 50 kHz (Pb-Pb), ≈ 1 MHz (pp) online reconstruction : all events to storage!

TPC Upgrade for continuous readout

ALICE

Goal: TPC continuous readout (⇔ no gating grid)

Solution: Replace MWPC with 4-GEMs

100 m² single-mask foils GEM production

Read Out Chamber

- GEM provides ion backflow suppression to < 1%</p>
- ⇒ 524 000 pads readout continuously ⇒ 3.4 TByte/sec

New Inner Tracking System and Muon Froward Tracker

Based on MAPS technology (ALPIDE)

- 10 m² active silicon area
- 12.5 G-pixels
- **50** μm thin sensor
- Spatial resolution ~5μm
- Max particle rate ~ 100 MHz /cm²

Inner Tracking System upgrade (ITS2)

- Closer to the IP: first layer at \approx 22 mm
- Smaller pixels: 28 x 29 μm^2
- Lower material budget: 0.35% X₀
- $\Rightarrow \text{ improved pointing resolution } (\mathbf{x 3})$ $\Rightarrow \text{ Improved tracking efficieny at low } p_{T}$

New Muon Forward Tracker (MFT)

- New forward vertex detector upstream muon absorber
- ⇒ improved muon pointing resolution

The (new) Fast Interaction Trigger (FIT)

Fast Interaction Trigger

- Minimum Bias and centrality selection
- Rejection of beam/gas events

Collision time for Time-Of-Flight particle ID

Multiplicity → Centrality and Event Plane

FT0 Cherenkov array

Based on quartz Cherenkov radiators Modified Planacon MCP-PMTs Excellent time resolution:

- < 50 ps for single channels @ 1 MIP</p>
- **7 ps** achieved with higher amplitudes or multi-channel average

Perspectives: upgrades for Run 4, ALICE 3 for Run 5

ITS3: wafer-scale, ultra-thin, bent MAPS improvement in the measurement of low p_T charm and beauty hadrons and low-mass dielectrons

Lol: CERN-LHCC-2019-018

FoCal: forward EM calo with Si readout for isolated γ measurement in 3.4 < η < 5.8 in p-Pb <u>LoI ALICE-PUBLIC-2019-005</u> ALICE

ALICE 3: a new dedicated heavy-ion detector for Run 5+ (> 2030)

Novel measurements of electromagnetic and hadronic probes of the QGP at very low momenta ⇒ mechanism of hadron formation in the QGP, QGP transport properties, QGP electrical conductivity, QGP radiation and access to the pre-hydrodynamization phase, Chiral Symmetry restoration, ...

Expression of Interest arXiv:1902.01211

Also submitted as input to the European Strategy for Particle Physics Update (Granada, May 2019)

Timeline

- Conceptual studies ongoing 2019-2021
- Public workshop in October 2021
- Submit a LoI to the LHCC by 2021
- Construction and installation by LS4

Conclusions

A wealth of results based on full Run 2 samples offer:

- Detailed insights into QGP workings and properties
- plus a broader and rich QCD programme:
 - pQCD, hadron structure, formation of hadrons and nuclei

Underway and coming up:

- Major upgrade for Run 3 on track (ALICE v. 2.0)
- In preparation: ITS3, FoCal for Run 4 (ALICE v. 2.1)
- Plans for next generation dedicated HI experiment for Run 5+ (ALICE v. 3.0)