

Recent CMS results on Top quark physics

Hongbo Liao

Institute of High Energy Physics, CAS, China

On behalf of CMS collaborations

20th Lomonosov, 19-25 August, 2021

top-quark

The top has several features that make it a very interesting particle:

- ✓ Heaviest particle discovered till now -- $m^t = 173.34 \pm 0.27(stat) \pm 0.71(syst)$ GeV
- ✓ Decays before hadronization
 - -- Give access to the physics of a "free" quark
- $\checkmark~$ Intensively couples to the Higgs boson

The LHC is a top factory and allows:

Over 200M top quark pairs in LHC Run II 13 TeV data

- ✓ Precise measurements of top pairs and single top production
- \checkmark Observation of rare processes involving top
- $\checkmark~$ Use the top quark as a "tool" to study the SM

- Provide a stringent test of our level of understanding of QCD
- \checkmark Allow to extract several SM parameters: a_s , m^{top}
- \checkmark Allow to improve the description of parton distribution functions

Differential and double-differential $\sigma(t\bar{t})$ in lepton + jets arXiv:2108.02803

2 tight b jets

reconstruction

resolved

boosted t_h resolved t

separate for e and μ channels separate for 3 years of data mbination fit of cross sections

1 tight b jet 1 loose b jet

reconstruction

resolved

boosted t_h boosted t

Boosted background subtraction using template fit of H

- ✓ High precision measurement of differential and doubledifferential cross sections
- ✓ For the first time the full spectra of differential cross sections are determined
 - -- combine of resolved and boosted $t\bar{t}$ topologies

Most of the predictions are in good agreement with the measurement, except:

- > $M(t\bar{t})$ vs. pT(th) and pT(t\bar{t}) vs. pT(th) shows largest disagreements.
- ➤ At particle level add. jets vs. kinematic observable are difficult to describe by NLO.

Inclusive cross section: 791 \pm 1 (stat.) \pm 21 (syst.) \pm 14 (lumi.) pb

- ✓ most precise measurement in lepton + jets channel
- Dominanted by: JES and b-tagging

ttcc/bb and *ttjj* production

- Test the state-of-art predictions at NLO ٠
- Irreducible background to $ttH, H \rightarrow bb$
- *ttbb* and *ttjj* measurement
 - $\sigma_{t\bar{t}bb}$ and $\sigma_{t\bar{t}bb}/\sigma_{t\bar{t}jj}$ extracted simultaneously from a 2D discriminant
 - PowhegPythia8 and MG_aMC@NLO+Pythia8 provide the best description
- First measurement of *ttcc* production
 - Simultaneous extraction of $\sigma_{t\bar{t}bb}$, $\sigma_{t\bar{t}c\bar{c}}$ and $\sigma_{t\bar{t}LL}$ using a template fit procedure

PLB 820 (2021) 136565

13 TeV

0.04

0.03

0.02

0.01

JHEP 07 (2020) 125

CMS Simulation

Lepton+jets

tĪLF

0.2

0.4

0.6

b tagging discriminant (1st additional jet)

0.8

b tagging discriminant (2nd additional jet)

0.8

0.6

0.4

0.2

0

0

Rare processes

Precise measurement of $t(\overline{t})$ +X production:

- Provide a stringent test also of electroweak processes
- Access to several coupling (tγ,tW,tH) sensitive to new physics effects

tW production in *l*+jets

CMS-PAS-TOP-20-002

- Categories based on jet multiplicity and 1 b-tagged jet:
 2J1T (W+Jets). 3J1T (tw Signal region) and 4J1T (ttbar)
- Data-driven background
- One BDT is trained per lepton flavor in signal (3J1T) region and evaluation in all regions
- Simultaneous ML fit performed in all categories using BDT discriminants
- Dominant uncertainty: Background estimation, JES and modeling

Measured (expected) signal strength:

 μ = 1.24 \pm 0.18 (1.00 \pm 0.17)

Cross section:

 $\sigma_{_{
m tW}}$ = 89 \pm 4 (stat.) \pm 12 (syst.) pb

$$\sigma_{\rm SM} = 72 \pm 4 ~\rm pb$$

✓ Observed (expected) significance is
 7.4 (6.8) standard deviations

First observation of tW production in *l***+jets**

Inclusive and differential tZq

- ✓ Full run2 dataset
- ✓ 3 leptons with improved lepton MVA
- ✓ constraining nonprompt background

0

✓ multiclass NN or BDT

Inclusive tZq cross-section:

 $\sigma_{\rm tZq} = 87.9 \ ^{+7.5}_{-7.3}$ (stat) $^{+7.3}_{-6.0}$ (syst) fb .

 $A_\ell = 0.58 \; {}^{+0.15}_{-0.16}$ (stat) ± 0.06 (syst) .

Spin asymmetry:

Differential tZq cross-section:

In general, observe good agreement between measurement and prediction.

CMS-PAS-TOP-20-010

Rare top production: $t\bar{t}V$

arXiv: 2107.01508

ttZ production

JHEP 03 (2020) 056

- Targets 3 or 4 isolated lepton channel with Z to l+l Inclusive cross section already systematic limited
 σ(ttZ) = 0.95 ± 0.05 (stat) ± 0.06 (syst) pb
- Dominated by signal/background MC modelling
 Differential cross sections are measured fist time

*tt*γ production

- ✓ Measured in lepton+iets channel 800 ± 46 (syst) ± 7 (stat) fb,
- ✓ Precision limited by MC modelling
- Differential cross sections measured in several kinematic observables
- \checkmark Good agreement with SM prediction

top properties

Now at LHC is possible to reach unprecedent precisions for the property measurements

Measurement of the y^t

- ✓ Measure the Yukawa (y^t) coupling in $t\bar{t}$ production.
 - Exploit the large effect that the radiation of a virtual H boson has on tt differential distributions
- \checkmark tredictions for different values of y^t obtained as event-based multiplicative corrections using HATHOR:
 - Applied on POWHEG predictions

$$R_{\rm EW}(M_{\rm t\bar{t}},\Delta y_{\rm t\bar{t}}) = \frac{d^2 \sigma_{\rm HATHOR}}{dM_{\rm t\bar{t}} \, d\Delta y_{\rm t\bar{t}}} \left/ \frac{d^2 \sigma_{\rm LO\ QCD}}{dM_{\rm t\bar{t}} \, d\Delta y_{\rm t\bar{t}}} \right.$$

g ~0000000000

 \checkmark The comparison with an additive approach is taken as uncertainty

0000000

tt forward-backward asymmetry JHEP 06 (2020) 146

 \checkmark NLO interference terms in t production from qq initial state creates a forward-backward asymmetry.

 $A_{\rm FB} = \frac{\sigma(c^* > 0) - \sigma(c^* < 0)}{\sigma(c^* > 0) + \sigma(c^* < 0)}$

- \checkmark Quantity never measured before @LHC, where the charge asymmetry is measured as a proxy
- ✓ Use variables sensitive to the difference between qq, qg and gg initial state to build templates and separate the qq
- \checkmark Extract A_{FB} and anomalous chromoelectric and chromomagnetic dipole moments

W polarization in ATLAS and CMS JHEP 08 (2020) 051

- ✓ Combination of the Wboson polarization in top quark decays, on Run1(8 TeV, 20fb⁻¹) data.
 - Wboson polarization determined by the V-A structure of the tWb vertex

$$\frac{1}{\Gamma}\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta^*} = \frac{3}{4}\left(1-\cos^2\theta^*\right) F_0 + \frac{3}{8}\left(1-\cos\theta^*\right)^2 F_\mathrm{L} + \frac{3}{8}\left(1+\cos\theta^*\right)^2 F_\mathrm{R}$$

- Combination of the polarization fractions from 4 measurements
 - Combination Improvement > 20% wrt the most precise measurement
- Measurement used to set limits on the anomalous coupling in the tWb vertex

		95% CL interval		
10	Coupling	ATLAS	CMS	ATLAS+CMS combination
	${ m Re}(V_{ m R})$	[-0.17, 0.25]	[-0.12, 0.16]	[-0.11, 0.16]
	$\operatorname{Re}(g_{\mathrm{L}})$	[-0.11, 0.08]	[-0.09, 0.06]	[-0.08, 0.05]
	${ m Re}(g_{ m R})$	[-0.03, 0.06]	[-0.06, 0.01]	[-0.04, 0.02]

Mass measurement in single top events

CMS-PAS-TOP-19-009

- ✓ Data-driven QCD is subtracted from the data
- ✓ Simultaneous ML fit using $y = ln(\mathbf{m}_t)$ distributions in μ and *e* final states, validated in control region

 $F(y) = f_{t-ch}F_{t-ch}(y ; y_0) + f_{Top}F_{Top}(y ; y_0) + f_{EWK}F_{EWK}(y)$

✓ y_0 , f_{t-ch} , f_{Top} and f_{EWK} are allowed to float during the fit

 $\Delta m_{\rm t} = m_{\rm t} - m_{\rm \tilde{t}} = 0.83 \pm 0.69 \,({\rm stat} + {\rm prof})^{+0.35}_{-0.74} \,({\rm syst}) \,\,{\rm GeV} = 0.83^{+0.77}_{-1.01} \,\,{\rm GeV}$

Search for new physics

Tool to search for new physics:

- ✓ Many BSM models are expected to involve top quark
 - Possible to perform direct searches for new resonances and FCNC
- ✓ Use the precise measurements to set a limit on new $t \rightarrow Hc$ operators in an EFT framework

Search for FCNC in the top sector

- Flavor changing neutral currents (FCNC) allow for transitions between quarks of different flavor but same electric charge
- FCNC processes are highly suppressed in the SM due to the GIM mechanism
 - Small contributions appear at one loop level
- Many extensions of the SM predict the presence of FCNC and give rise to detectable FCNC amplitude

21	SM	QS	2HDM	FC $2HDM$	MSSM	₿ SUSY
$t \rightarrow uZ$	8×10^{-17}	$1.1 imes 10^{-4}$		-	$2 imes 10^{-6}$	3×10^{-5}
$t \to u \gamma$	3.7×10^{-16}	7.5×10^{-9}	1000	-	2×10^{-6}	1×10^{-6}
$t \to ug$	3.7×10^{-14}	$1.5 imes 10^{-7}$		-	$8 imes 10^{-5}$	$2 imes 10^{-4}$
$t \to u H$	2×10^{-17}	4.1×10^{-5}	5.5×10^{-6}	-	10^{-5}	$\sim 10^{-6}$
$t \to c Z$	1×10^{-14}	1.1×10^{-4}	$\sim 10^{-7}$	$\sim 10^{-10}$	$2 imes 10^{-6}$	$3 imes 10^{-5}$
$t \to c \gamma$	4.6×10^{-14}	7.5×10^{-9}	$\sim 10^{-6}$	$\sim 10^{-9}$	2×10^{-6}	1×10^{-6}
$t \to cg$	4.6×10^{-12}	1.5×10^{-7}	$\sim 10^{-4}$	$\sim 10^{-8}$	8×10^{-5}	2×10^{-4}
$t \to c H$	3×10^{-15}	4.1×10^{-5}	1.5×10^{-3}	$\sim 10^{-5}$	10^{-5}	$\sim 10^{-6}$

Any evidence of FCNC will indicate the existence of new physics

Branching ratios for top FCN decays in the SM, models with Q = 2/3 quark singlets (QS), a general 2HDM, a flavour-conserving (FC) 2HDM, in the MSSM and with R parity violating SUSY.

Search for FCNC tHq interaction by $H \rightarrow \gamma \gamma$ **CMS-PAS-TOP-20-007**

Hc) (%)

1

(t

Signal modeling: effective Lagrangian

$$\mathcal{L} = \sum_{q=u,c} \frac{g}{\sqrt{2}} \bar{t} \kappa_{Hqt} \left(F_{Hq}^{L} P_{L} + F_{Hq}^{R} P_{R} \right) q H + \text{h.c.},$$

- Production & decay
- Signal regions: 2 photons, 100 < m_{vv} < 180 GeV</p>
 - \succ leptonic: ≥ 1 jet, ≥ 1
 - \succ hadronic: \geq 3 jet, \geq 1 b-jet
- Strategy
 - > 8 BDTs: (u, c) \times (lep, had) \times (res, non-res bkg)
 - 7 categories defined by BDTscore
 - 14 m_{vv} distributions to fit
 - Dominant uncertainties:
 - b-tagging and y identification
 - Data compatible with absence of signal
 - Upper limits on the signal cross sections are translated to the strength of the tgH anomalous couplings and related branching fractions

Search for FCNC tHq interaction by $H \rightarrow bb$ CMS-PAS-TOP-19-002

- Production & decay
- ➢ Signal region: 1ℓ, ≥3 jet, ≥2 b-jet
- A deep neural network is used to associate the reconstructed objects to the matrix-element partonic final state
- BDTs are used to distinguish the signal from the background event
- All bjet-jet categories are combined
- No significant excess with respect to the SM background expectations: 95% CL limits are set on the xs, couplings and BRs
- Significant improve with respect to the early run-2 search

\$000000000

Unc.

101 fb⁻¹ at √s = 13 Te\

b4j4

Other Bkg

CMS Preliminary

ttbb

Hct

ttcc

Data

Events / bir 5000

Data / MC

4000

3000 2000

1000

EFT interpretation of t/tt +leptons JHEP 03 (2021) 095

- ✓ Considering at the same time the yields from several signals: \overline{tt} H, \overline{tt} Z(II), \overline{tt} W(Inu),tZq,tHq
- > Divide the event collected in regions categorized on jets and b-jets multiplicity and lepton flavour and charge
- > Obtained a total of 35 independent regions used to constraint the EFT operators
- ✓ Investigate 16 EFT operators simultaneously
- > Only dimension 6 operators: 4 fermion operators, boson-quark and quark gluon operators included
- > Interference among operators and with the SM considered

- ✓ Obtain 1D and 2D profiled and individual limits from likelihood fit
- ✓ Main systematics: Theory ($\mu_{R,F}$), modelling, JES, lepton ID and isolation

20

EFT search in \geq 3L final states

- Full Run II Luminosity 138/fb with main processes: tZq/ttZ/tWZ \geq
 - Leptonically decaying top + Z boson candidate
- 5 operators: weak dipole moment interactions, left- and right-handed top guark vector couplings
- Extensive use of MVAs
 - -- discriminate SM processes :
 - -- separate SM/BSM events
- signal extraction with 1D, 2D, and 5D likelihood fit
- Systematics: theory and NP lepton dominate

	Other WCs fixed to SM		5D fit		
	Expected	Observed	Expected	Observed	
WC / Λ^2 [TeV ⁻²]	95% CL confidence intervals				
c_{tZ}	[-0.97, 0.96]	[-0.76, 0.71]	[-1.24, 1.17]	[-0.85, 0.76]	
c_{tW}	[-0.76, 0.74]	[-0.52, 0.52]	[-0.96, 0.93]	[-0.69, 0.70]	
$c_{\omega O}^3$	[-1.39, 1.25]	[-1.10, 1.41]	[-1.91, 1.36]	[-1.26, 1.43]	
$c_{\omega O}^{\uparrow \sim}$	[-2.86, 2.33]	[-3.00, 2.29]	[-6.06, 14.09]	[-7.09, 14.76]	
γ2 C _{φt}	[-3.70, 3.71]	[-21.65, -14.61] U[-2.06, 2.69]	[-16.18, 10.46]	[-19.15, 10.34]	

- Better limits than eariler results from the ttZ cross section measurement
- Agreement within 2σ in general

 \mathcal{O}_{tZ}

 \mathcal{O}_{tW}

 $\mathcal{O}^3_{\phi \mathrm{O}}$

 $\mathcal{O}_{\varphi \mathsf{Q}}^{-}$

CMS-PAS-TOP-21-001

 $\operatorname{Re}\left\{-s_{W}c_{UB}^{(33)}+c_{W}c_{UW}^{(33)}\right\}$

 $\text{Re}\{c_{11W}^{(33)}\}$

 $c_{\varphi q}^{1(33)} - c_{\varphi q}^{3(33)}$

 $c_{\varphi q}^{3(33)}$

- ➢ Full Run II luminosity 137 fb⁻¹
 - Ilepton channel, binned in lepton flavor
- Interpretation in c_{tz} (weak dipole moment)

	Wilson coefficient		68% CL interval	95% CL interval	
			$(\Lambda / \text{TeV})^2$	$(\Lambda / \text{TeV})^2$	
р	C	$c_{tZ}^{I} = 0$	[-0.19, 0.21]	[-0.29, 0.32]	
ecte	۲tZ	profiled	[-0.19, 0.21]	[-0.29, 0.32]	
Exp	cI	$c_{tZ} = 0$	[-0.20, 0.20]	[-0.30, 0.31]	
	۰tZ	profiled	[-0.20, 0.20]	[-0.30, 0.31]	
ы		$c_{tz}^{I} = 0$	[-0.35, -0.16]	[-0.42, 0.38]	
erve	c _{tZ}	profiled	[-0.35, 0.07]	[-0.42, 0.39]	
Obs	\mathcal{C}_{IZ}^{I}	$c_{tZ} = 0$	[-0.35, -0.16], [0.17, 0.35]	[-0.42, 0.42]	
	τZ	profiled	[-0.32, 0.31]	[-0.41, 0.41]	

arXiv: 2107.01508

Search for CLFV interactions CMS-PAS-TOP-19-006

- > In the SM, lepton flavor is conserved in all interactions
- > Many new physics models predict sizable CLFV (neutrino mass, multi-Higgs doublet models,...)
- ➢ If the new physics responsible for the CLFV is at scales beyond what the LHC can directly probe, the SM Lagrangian can be extended by dimension-6 operators $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{x} \frac{C_x}{\Lambda^2} O_x + \dots,$ Production
 Decay
- ✓ Search for CLFV in $e\mu$ final state [137 fb⁻¹]
- ✓ Production & decay
- Signal: CLFV vector, scalar and tensor
- ✓ BDT is used to discriminate signal from BG events
- Data consistent with SM expectation
 - ✓ Upperlimits are set at 95%CL

Search for CP Violation

CMS-PAS-TOP-20-005

- > CP violation in SM is insufficient to describe the matter-antimatter asymmetry of the universe
- > In the SM, CPV in the production and decay of top quark pairs is predicted to be very small
- Simple CP odd observables

$$A_i = rac{N(\mathcal{O}_i > 0) - N(\mathcal{O}_i < 0)}{N(\mathcal{O}_i > 0) + N(\mathcal{O}_i < 0)}.$$

- > chromo-electric dipole moment (CEDM) of top quark in top pair production induces CPV
- ✓ Lepton + jets final states [137 fb⁻¹]
- \checkmark Observables; O₃, O₆, O₁₂ and O₁₄
- ✓ Top quark and antiquark candidates are reconstructed using a χ^2 sorting algorithm
- ✓ The background contribution in the signal region is estimated from a fit to the mass distribution
- There is no significant evidence of CPV in each observable
 - Consistent with the SM prediction

			$A'_{CP}(\%)$	
	1	e + jets	$\mu + jets$	Combined
(\mathcal{O}_3	$-0.071\pm0.149(ext{stat.})^{+0.092}_{-0.058}(ext{system})$	st.) -0.035 ± 0.120 (stat.) $^{+0.022}_{-0.094}$ (syst.)	$-0.048\pm0.094(ext{stat.})^{+0.041}_{-0.065}(ext{syst.})$
(D ₆	$-0.167 \pm 0.149 (\text{stat.})^{+0.077}_{-0.038} (\text{sys})^{+0.077}_{-0.038}$	st.) $-0.111 \pm 0.120(\text{stat.})^{+0.042}_{-0.093}(\text{syst.})$	$-0.131 \pm 0.094(ext{stat.})^{+0.049}_{-0.068}(ext{syst.})$
C) ₁₂	$-0.039\pm0.149({ m stat.})^{+0.056}_{-0.090}({ m system})$	st.) $+0.163 \pm 0.120$ (stat.) $^{+0.038}_{-0.065}$ (syst.)	$+0.090\pm0.094({ m stat.})^{+0.034}_{-0.053}({ m syst.})$
C	D_{14}	$-0.186 \pm 0.149 (\text{stat.})^{+0.075}_{-0.065} (\text{sys})^{+0.075}_{-0.065}$	st.) $-0.162 \pm 0.120(\text{stat.})^{+0.117}_{-0.032}(\text{syst.})$	$-0.171\pm0.094(ext{stat.})^{+0.085}_{-0.023}(ext{syst.})$

Summary

LHC is a top factory and CMS is exploiting the large sample collected maximally:

- ✓ Reducing the uncertainties on inclusive measurements
- ✓ Performing differential measurements
 - in challenging phase-space and channels and as a function of several variables
 - -- providing a complete description of the tt kinematic
 - providing stringent test of QCD and electroweak predictions
- ✓ Searching for very rare processes
 - > Measuring with increasing precision $t(\overline{t})+X$ and including differential distributions
 - > First observation of tW production in ℓ +jets
- Measuring the top properties and couplings with innovative techniques
 - ➢ Use top events to test the fundamental bases of the SM
- ✓ Setting constraints to the existence of new physics: FCNC, EFT, CLFV, CPV...

Several exciting new measurements have been presented, but stay tuned since more results are coming.....

Thanks for your attention!!!

References

- LHCTopWG <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWG</u>
- ♦ ATLAS: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults</u>
- CMS: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP</u>

Backup

OPERATORS AND PHYSICS IMPLICATIONS

