CUPID-Mo: a world leading limit on neutrinoless double beta decay of ¹⁰⁰Mo

LÉONARD IMBERT ON BEHALF THE CUPID-MO COLLABORATION

LOMONOSOV CONFERENCE

22/08/2021

universi

PARIS-SACLAY

Visit Clab Irène Joliot-Curie Laboratoire de Physique des 2 Infinis

Neutrinoless double beta decay

2νββ

- $2n \rightarrow 2p + 2e + 2\bar{v}_e$
- even-even nucleus
- Observed for 12 isotopes

0νββ

- Hypothetical decay
- 2n -> 2p + 2e⁻
- Peak in the sum of electrons energy spectrum
- Lepton number violation
- Majorana neutrino v = ⊽

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}g_A^4 M^2 \left|\frac{m_{\beta\beta}}{m_e}\right|^2$$

For light Majorana neutrino exchange

Majorana neutrino needed in leptogenesis

Scintillating bolometers

- Crystals cool down to ~ 10-20 mK
- $\circ \Delta T = E/C$
- Detector = source
- High detection efficiency
- Excellent energy resolution
- Simultaneous read out light and heat
- Ge wafer operated as bolometer to measure scintillation light
- Discrimination between β/γ and α particles

Scintillating Bolometer

CUPID-Mo set-up

Demonstrator for CUPID

Installed at Laboratoire Souterrain de Modane (LSM) (4800 m.w.e)

In EDELWEISS cryostat

¹⁰⁰Mo, $Q_{\beta\beta}$ = 3034 keV

20 Li₂¹⁰⁰MoO₄ scintillating bolometers

- ~ 0.2 kg Li₂¹⁰⁰MoO₄ cylindrical crystals
 - Ø 43.8 mm × 45 mm
- ¹⁰⁰Mo enrichment ~ 97 %
- 2.26 kg of ¹⁰⁰Mo
- 5 towers of 4 crystals
- Ge wafers as Light Detector
 - Ø 44.5 mm × 170 μm
 - SiO coating on both sides

Armengaud, E., et al. "The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects." The European Physical Journal C 80.1 (2020): 1-15.

CUPID-Mo Data Release @ Neutrino 2020

- Data acquired between March 2019 and June 2020
- The detectors were operated at 20-22 mK
- Data release @ Neutrino2020 and published in PRL.126.181802 :
- 2.16 kg.year exposure
 - 240 days of physic data
 - 73 days of calibration data
 - 6 days of ⁶⁰Co data
 - 10 days of AmBe data

Release @ TAUP 2021

- Exposure 2.71 kg.year
- New analysis

CUPID-Mo Performances

- Energy Resolution
 - $^\circ~\Delta\text{E(FWHM)}$ @ $Q_{\beta\beta}$ = 7.6 \pm 0.7 (stat.) \pm 0.2 (syst.) keV

• Light Yield

- $\circ~\beta/\gamma$ Light Yield per LD \sim 0.7 keV/MeV
- > 99.9 % $\gamma(\beta)/\alpha$ separation

- Crystals radiopurity
 - $\circ~$ Bulk radiopurity obtained from the counting rate in $\alpha~$ peaks
 - $^\circ~^{238}\text{U}/^{232}\text{Th}$ and daughters \sim (0.2 0.5) $\mu\text{Bq/kg}$

Chain	Nuclide	Activity [μBq/kg]
²³² Th	²³² Th	0.22(9)
	²²⁸ Th	0.38(9)
	²²⁴ Ra	0.34(9)
	²¹² Bi	0.22(7)
238U	²³⁸ U	0.35(10)
	²³⁴ U+ ²²⁶ Ra	1.22(17)
	²³⁰ Th	0.48(12)
	²²² Rn	0.47(10)
	²¹⁸ Po	0.35(9)
	²¹⁰ Po	95(6)
	¹⁹⁰ Pt	0.19(8)

ke

Events /

IMBERT LÉONARD

CUPID-Mo Simulations

- Geant 4 based program
- Decays of the ²³⁸U and ²³²Th chain, or other nuclei generated in all the different components
- We can consider 4 main regions
 - Crystal bulk and surface
 - Reflecting foils bulk and surface
 - Close sources (10 mK)
 - Cryostat and Shields
- Detector effects convolved directly into MC spectra
 - Energy resolution and threshold
 - Cut Efficiencies
 - Anti-coincidences

Geant4 Rendering of the Edelweiss set up with the CUPID-Mo detectors as implemented in the simulations

CUPID-Mo Background model

- Global fit to the data with MC simulations
 - Bayesian approach using Just Another Gibbs Sampler
 - JAGS-based tool of analysis is developed since 2014 for background model studies in the framework of the CUORE collaboration^[1]
- Simultaneous M1, M1alpha, M2sum
- Data
 - Exposure 2.71 kg.y blinded (TAUP 2021 release)

[1] Alduino, C., et al. "Measurement of the two-neutrino double-beta decay half-life of 130Te with the CUORE-Oexperiment." The European Physical Journal C 77.1 (2017): 1-18. [1] Azzolini, O., et al. "Background model of the CUPID-Oexperiment." The European Physical Journal C 79.7 (2019): 583.

CUPID-Mo Background budget

Limit on $0\nu\beta\beta$ of ¹⁰⁰Mo

- Bayesian counting analysis used to extract limit
 - 3 region one signal, two background
- Unblinding: No events in ROI or sideband
 - One ²⁰⁸TI DC event

Leads to world leading limit on $0\nu\beta\beta$ of ¹⁰⁰Mo:

 $T_{1/2} > 1.5 \times 10^{24}$ y (90% Cl) $m_{\beta\beta} < (310 - 540)$ meV

New data @ TAUP2021

- Exposure 2.71 kg.y
- Improved 0vββ analysis
 - Delayed Coincidences studies
 - (rejection of high energy beta events)
 - Improved Light Yield cuts
 - New cuts for alpha rejection
 - New PCA cuts
- 2vββ and 0vββ Excited
 States analysis
 - Topological search for ES decays using multi-site events

CUPID

Next generation ton scale bolometric $0\nu\beta\beta$ experiment

To be installed at Laboratori Nazionali del Gran Sasso (LNGS) in the CUORE cryostat

CUPID-Mo technology chosen for CUPID

¹⁰⁰Mo : Q_{ββ} = 3034 keV

Li₂¹⁰⁰MoO₄ scintillating crystals

- Enrichment > 95 %
- Cubic crystals : 45×45×45 mm³ -> 0.28 kg
- $\circ\,\,$ ^ 1500 crystals $\,\,$ ^ 240 kg of ^{100}Mo
- $^{\circ}$ ΔE FWHM \sim 5 keV @ Q-value 3034 keV
- $\circ \alpha$ rejection using light signal

Conclusions

CUPID-Mo: 20 $\text{Li}_2^{100}\text{MoO}_4$ detectors operated with simultaneous readout of heat and light $\rightarrow \alpha$ rejection

- Data taking March 2019 July 2020
- Has succesfully demonstrated the maturity of the technology for the next generation experiment CUPID
- $^{\rm o}$ World leading limit on 0v $\beta\beta$ of 100 Mo, with 1.21 kg·y of 100 Mo :

```
T<sub>1/2</sub> > 1.5 × 10<sup>24</sup> y (90% Cl)
```

 $^{\circ}$ 4th most stringent limit m_{$\beta\beta$} < (310 - 540) meV

• New limit will be presented @ TAUP2021

NME References

- P. K. Rath et al., Phys. Rev. C 88, 064322 (2013).
- F. Simkovic, V. Rodin, A. Faessler, and P. Vogel, Phys. Rev. C 87, 045501 (2013).
- N. L. Vaquero, T. R. Rodriguez, and J. L. Egido, Phys. Rev. Lett. 111, 142501 (2013).
- J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 91, 034304 (2015).
- J. Hyvarinen and J. Suhonen, Phys. Rev. C 91, 024613 (2015).
- L. S. Song, J. M. Yao, P. Ring, and J. Meng, Phys. Rev. C 95, 024305 (2017).
- F. Simkovic, A. Smetana, and P. Vogel, Phys. Rev. C 98, 064325 (2018).
- P. K. Rath, R. Chandra, K. Chaturvedi, and P. K. Raina, Front. in Phys. 7, 64 (2019).

Sensitivities references

- Agostini, Matteo, Giovanni Benato, and Jason A. Detwiler. "Discovery probability of next-generation neutrinoless double-β decay experiments." *Physical Review D* 96.5 (2017): 053001.
- Gomez-Cadenas, J. J. "Status and prospects of the NEXT experiment for neutrinoless double beta decay searches." *arXiv preprint arXiv:1906.01743* (2019).
- Galan, J., et al. "Topological background discrimination in the PandaX-III neutrinoless double beta decay experiment." *Journal of Physics G: Nuclear and Particle Physics* 47.4 (2020): 045108.

IMBERT LÉONARD

IMBERT LÉONARD