

The GERDA experiment in the search for neutrinoless double-beta decay

Valentina Biancacci on behalf of the GERDA collaboration

Lomonosov Conference 2021

Double-beta decay without neutrinos

The neutrinoless double-beta (0v $\beta\beta$) decay is a hypothetical nuclear transition.

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

For the standard interpretations, $0\nu\beta\beta$ can be mediated by the exchange of two massive Majorana neutrinos.

$$\frac{1}{T_{1/2}^{0\nu}} = |M^{0\nu}|^2 G^{0\nu}(Q,Z) \left(\frac{\langle m_{\beta\beta}\rangle}{m_e}\right)^2$$

nuclear matrix element phase space factor

$$\langle m_{etaeta}
angle = \Big|\sum_i U_{ei}^2 m_i\Big|$$
 effective neutrino mass

Motivation for $0\nu\beta\beta$ decay searches

- Establish lepton number violation (LNV) $\rightarrow \Delta L=2$
- Only way to determine if neutrino is its own antiparticle ($\nu = \overline{\nu}$)
- Important to understand the origin of the neutrino mass
- Probe the absolute neutrino mass scale and neutrino mass ordering
- Provide important input to cosmology

$0\nu\beta\beta$ signature and half-life

 $0\nu\beta\beta$ signal = monoenergetic peak

$$T_{1/2}^{0
u}\proptoigg| iggleq rac{\epsilon\cdot a\cdot \sqrt{rac{M\cdot t}{BI\cdot\Delta E}}}{\epsilon\cdot a\cdot M\cdot t}$$
 with background without background

 ϵ : detection efficiency a: isotopic abundance M: total detector mass t: run time BI: background index ΔE : energy resolution at $Q_{\beta\beta}$

low background level and good energy resolution

The GERDA collaboration

The **GERDA** experiment (**GER**manium **D**etector **A**rray) is searching for the neutrinoless double beta decay of 76 Ge.

Collaboration meeting in Zurich (2019)

GERDA experiment

- The GERDA experiment has been proposed in 2004 as a new ⁷⁶Ge double-beta decay experiment at LNGS (Italy).
- Up to 41 enriched detectors deployed from Dec 2015 to Dec 2019.
- Two data taking periods with an upgrade in May 2018 in between.

- The array of germanium detectors was placed in a liquid argon (LAr) cryostat.
- A tank filled with 590 m³ pure water surrounded the cryostat.
- Water tank equipped with PMTs detecting Cherenkov light.

⁷⁶Ge Detectors

Why germanium?

- High detection efficiency (detector = $\beta\beta$ source)
- Enrichment from 7.7% to ~88%
- Best proved energy resolution at the Q-value (0.13% FWHM)
- Lowest background per FWHM energy resolution in the field

- (a) Semi-coaxial detectors:
 - A. typically mass 2~3 kg
 - B. enriched to \sim 87% in ⁷⁶Ge
- (b) **BEGe**(Broad Energy Germanium) detectors:
 - A. average mass 670 g
 - B. small p+ contact at the bottom side
 - C. excellent energy resolution

Inverted-coaxial detectors:

- A. same advantageous characteristics of BEGe
- B. larger mass

Valentina Biancacci

(c)

Data taking

- 2011-2013: Phase I, 23.5 kg yr exposure
- 2015-2019: Phase II, 103.7 kg yr exposure, installation of LAr veto, upgrade with IC detectors in 2018, operation in background-free regime

Energy resolution

- Peak fitting algorithm to determine each detector's resolution
- Gaussian mixture models to determine resolutions per detector type
- Excellent energy resolution leads to lower backgrounds and higher discovery potential
- Well-understood peak shape, energy scale stability, and linearity lead to improved confidence in results

[GERDA, Eur. Phys. J. C (2021) 81, 682]

Active background reduction tools

 ββ decay signal: single-site event energy deposition in a 1 mm³ volume

- Anti-coincidence with the muon veto
- Anti-coincidence between detectors (cuts multi-site)
- Active veto using LAr scintillation (LAr Veto)
- Pulse shape discrimination (PSD)

Valentina Biancacci

Total active background suppression

- ± 25 keV around Q_{BB} blinded
- Spectrum well understood:
 - \circ \lesssim 0.5 MeV: ³⁹Ar
 - ~ [0.5 2] MeV: 2vββ
 - o ≈4 MeV: α
- Flat background in 0vββ signal region

22.08.21

11

GERDA, Science 365, 1445-1448 (2019)

Results

- Combined unbinned maximum likelihood fit
 - Combined fit of Gaussian signal & uniform background
- Best fit for null signal strength

	Goals	Achievements
Background	10 ⁻³ cts/(keV kg yr)	$5.2^{+1.6}_{-1.3} \cdot 10^{-4} \mathrm{cts/(keV \ kg \ yr)}$
Exposure	≥100 kg yr	103.7 kg yr (footnote Phase I)
Sensitivity	$T_{1/2}^{0 uetaeta} \ge 10^{26} \mathrm{yr}$	$T_{1/2}^{0 uetaeta} > 1.8 \cdot 10^{26} \mathrm{yr}$

Conclusion

- GERDA employed an array of HPGe detectors enriched in ⁷⁶Ge to search for 0vββ
- GERDA ran in background-free regime for the entire duration of its data taking.
- Provides the most stringent constraints on the half-life of $0\nu\beta\beta$ decay:

$$\mathrm{T_{1/2}} > 1.8 \times 10^{26} \ \mathrm{yr} \ \rightarrow \ |\mathrm{m_{\beta\beta}}| \lesssim 79 - 180 \ \mathrm{meV}$$

• Next step...

[GERDA , Nature 544 (2017), 47–52]

22.08.21

backup

Liquid Argon Veto

- Stable operations over 4 years of data taking:
 - o 16 PMts
 - 1.5 km light guiding fibers + SiPM readout
 - Vetoes events in coincidence with Germanium
- Acceptance ($0v\beta\beta$) ~ 98%
- Crucial role in background suppression after PSD: ÷ 6 in the ROI

[GERDA, European Phys J C 78 (2018), 388]

22.08.21

Searching in ⁷⁶Ge

Why using Germanium?

Advantage

- High efficiency \rightarrow Source=Detector
- Small intrinsic BI = high purity Ge
- Excellent ΔE
- Well-established technology

Disadvantages

- Small Q-value
- Small $G^{0\nu}(Q,Z)$
- Small abundance $0v\beta\beta$ of isotope

HPGe detector

HPGe detectors

Advantages of Inverted Coaxial Point Contact (ICPC) detectors:

- Enriched detectors, 92% of detector material is ⁷⁶Ge
- Excellent resolution and pulse shape discrimination
- Significantly larger w.r.t. BEGe or PPC (up to 3 kg)
- Less channels, less background
- Better surface to volume-ratio (30-40%)
- Production started early 2019
- About 60 detectors expected by fall 2021

Performance on the energy scale

• Zero Area Cusp energy filter [European Phys J C 75 (2015), 255]

Background model

[GERDA, J High Energy Phys, 2020 (2020), no. 3, 139]

All the background components are well known

22.08.21

Details on PSD

22.08.21

LEGEND experiment

First Stage (LEGEND-200):

- Upgrade of the existing infrastructure of GERDA experiment
- Reduction of the BI of a factor 5 w.r.t. GERDA Phase II goal
- ~200 kg of detector mass: 35 kg from GERDA + 30 kg from MJD + 140 kg which are new.

Further Stage (LEGEND-1000):

- 1000 kg detector mass (staged)
- Background reduction of a factor 20 w.r.t. LEGEND-200
- To reach beyond 10²⁸ yrs half-life discovery sensitivity
- Location to be defined (SNOLAB or LNGS)

L200 Goals

half life discovery sensitivity mass sensitivity background index cts/(keV·kg·yr)

 $10^{27} \, \rm vrs$ 30-70 meV $2 \cdot 10^{-4}$

Discovery sensitivity for ⁷⁶Ge, ¹³⁰Te, and ¹³⁶Xe

Comparison of rough sensitivity between ongoing & planned experiments

Agostini, Benato, Detwiler, Phys. Rev. D 96 053001 (2017)