Exotic physics signatures at CMS

Amandeep Kaur (on behalf of CMS collaboration)

20th Lomonosov Conference on Elementary Particle Physics

August 19-25, 2021

Amandeep Kaur (CMS) (Lomonosov 2021)

Exotic physics signatures at CMS

Introduction

- CMS (Compact muon solenoid) : a multipurpose detector at the LHC ring resulted in the discovery of Higgs Boson in 2012
- With successful data taking during Run-II and having several upgrades for implementing fast electronics, CMS has recorded up to ~139 fb⁻¹ of data from 2016-2018 at 13 TeV
- This led to more precise SM measurements and better understanding of standard model physics
- Opened doors to explore rare physics signatures beyond standard model physics

6000 6000 **Run II:** $<\mu > = 34$ Recorded Luminosity ($\mathrm{pb}^{-1}/1.00$) **2018:** <*µ*> = **37** 5000 5000 **2017:** <*µ*> = **38 2016:** <*µ*> = **27** 4000 4000 **2015:** <*µ*> = **13** 3000 3000 σ_{in}^{pp} (13 TeV) = 80.0 mb 2000 2000 1000 1000 0 200 20 ٥۵ 60 80 Mean number of interactions per crossing

Why looks for exotic signatures?

 Standard model successfully explains the structure of matter and the forces acting between them. Still, it fails to answer many important questions:

- Inclusion of the forth fundamental force i.e gravitational force
- Why only 5% of matter made of ordinary SM particles?
- Why there are only three families of quarks and leptons?
- Is there a more fundamental theory of which the Standard Model is a low energy approximation?

To answer such questions , new models beyond standard model have evolved with time and predicts "new phenomena" at the "TeV" scale

Amandeep Kaur (CMS) (Lomonosov 2021)

Exotic physics signatures at CMS

What do we look for Beyond SM?

$W\gamma$ resonances

$ee \& \mu\mu$ resonances

Full Run 2 dataset

Trijet resonances : $G_{KK} \rightarrow ggg$

- First LHC results for a trijet resonance with a boosted dijet and a single jet
- KK gluon (R_1) decays into 3 SM gluons $(P_1, P_2 \text{ and } P_3)$ via a radion (R_2) (spin-0)
- Boosted dijet reconstructed as a single jet with two body jet sub-structure

JEV

No statistically significant excesses above the background predictions are observed.

Amandeep Kaur (CMS) (Lomonosov 2021)

Exotic physics signatures at CMS

August 19-25, 2021

7 / 23

Heavy charged boson ($W' \rightarrow \ell \nu$)

CMS : <u>PAS-EXO-19-007</u>

Full Run 2 dataset

Amandeep Kaur (CMS) (Lomonosov 2021)

Exotic physics signatures at CMS

Leptoquark searches (LQs)

LQ appears in many BSM models to answer the question: Why same number of generation for leptons and quarks

- Leptoquarks carry both lepton and baryon number
 - carry fractional electric charge (+2/3e, -1/3e: up/down types)
 - decay in lepton-jet
- Motivated by models such as grand unified theories, technicolor models, compositeness scenario and R-parity violating supersymmetry

provide an explanation for series of anomalies observed in the measurement of B meson decays in charged-current $(b \rightarrow c\ell v)$ and neutral b $(b \rightarrow s\ell \ell)$ processes observed by Babar, Belle and LHCb

Probing for Leptoquarks

Full Run 2 dataset

- Third generation vector leptoquarks : pair + single production modes
- Couples to a top quark plus a τ lepton (tτ) or a bottom quark plus a neutrino (bν, scalar LQ), or else to tν or bτ (vector LQ), leading to the final states tτνb and tτν
 - high p_T^{miss} , high H_T , one hadronic top candidate and one hadronic au

Exotic Higgs decays ($ZH \rightarrow ZSS \rightarrow 4\ell 4b$ **)**

Amandeep Kaur (CMS) (Lomonosov 2021)

Exotic physics signatures at CMS

||/ 23

Exotic Higgs decays ($H \rightarrow SS \rightarrow 4j$ **)**

Full Run 2 dataset

CMS Simulation Preliminary

Green lines : tracks Yellow lines : jets Red arrow : MET direction Red and Blue cones : ECAL and HCAL energy deposits

CSC Hits

Exotic Higgs decays \rightarrow displaced jets

- Distinctive topology: pair of jets originating at a secondary vertex
- Models targeted : LLP decaying to q-qbar, Exotic decays of Higgs: gg \rightarrow H \rightarrow 2S, S \rightarrow qq (c $\tau \sim 1$ mm to 1m)

Amandeep Kaur (CMS) (Lomonosov 2021)

CMS: arXiv:2012.01581

Full Run 2 dataset

Η

Probing for very low mass bosons

- Dedicated dimuon trigger stream with low transverse momentum thresholds to select displaced muons with transverse displacement range $I_{xy} < 11cm$ from the interaction point
- Explored inaccessible phase-space at low dimuon mass
- Bump hunt in mass range : 0.3 50 GeV
- Most stringent constraints to date on the BSM signal models in a wide range of signal mass and lifetime hypotheses

CMS: PAS-EXO-20-014

To Summarize...

- Wide range of searches with all possible final states for exotic signatures at CMS probing in multi-dimensional phase space
- Many new searches and results with Run2 data
- Rise in new techniques and tagging algorithms for Run3 (going to start next year)
- New tools using ML are in practice now!!
- Excited to look for "Exotic signatures" with upgraded detector with advanced technology

Additional Slides

Amandeep Kaur (CMS) (ICPPA-2020)

Exotic searches by ATLAS and CMS

September 6, 2020

16/16

EXO Summary plot

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).

Amandeep Kaur (CMS) (Lomonosov 2021)

Exotic physics signatures at CMS

mass scale [TeV]

August 19-25, 2021

Moriond 2021