Recent New Physics Search Results at BESIII

Dayong Wang dayong.wang@pku.edu.cn

"The 20th Lomonosov Conference on Elementary Particle Physics" Moscow State University, Aug 22 2021

Features for NP search@BESIII

- Event is very clean
- □ High tagging efficiency
- □ Many systematic uncertainties can be cancelled
- Could measure absolute BFs

> D⁰⁽⁺⁾ samples

$> D_s^+/D_s^+/\Lambda_c^+$ samples

Charged LFV in J/ψ decays

- New physics models predicting BR($J/\psi \rightarrow e\mu$) to $10^{-16} \sim 10^{-9}$, BR($J/\psi \rightarrow e\tau(\mu\tau)$) to $10^{-10} \sim 10^{-8}$.
 - model-independent prediction [1, 2]
 - rotating mass matrix [3]
 - unparticle physics [4]
 - effective Lagrangian [5]
 - MSSM with gauged baryon and lepton number [6]
 - . .
- Experimental results

	J/ψ number	$J/\psi ightarrow e\mu$	$J/\psi ightarrow e au$	$J/\psi ightarrow \mu au$
BES	58 million	$< 1.1 \times 10^{-6}$ [7]	< 8.3×10 ⁻⁶ [8]	$< 2.0 \times 10^{-6}$ [8]
BESIII	225 million	< 1.6×10 ⁻⁷ [9]	-	-

- [1] X. M. Zhang et al, Phys. Rev. D 63, 016003 (2000).
- [2] T. Gutche et al, Phys. Rev. D 83, 115015 (2011).
- [3] J. Bordes and H. M. Chan, Phys. Rev. D 63, 016006 (2000).
- [4] K. S. Sun et al, Mod. Phys. Lett. A 27, 1250172 (2012).
- [5] D. E. Hazard and A. A. Petrov, Phys. Rev. D 94, 074023 (2016).
- [6] X. X. Dong et al, Phys. Rev. D 97, 056027 (2018).

[7] BES Collaboration, Phys. Lett. B 561, 112007 (2003).

[9] BESIII Collaboration, Phys. Rev. D 87, 112007 (2013).

[8] BES Collaboration, Phys. Lett. B 598, 172 (2004).

B€SⅢ

- Phys. Rev. D 103, 112007 (2021) Based on 10 billion J/ψ data set: 1310.6M collected @2009+2012 (sample I), 8774.01M collected @2017-2019 (sample II).
- $J/\psi \to e\tau$, $\tau \to \pi\pi^0 \nu$.
 - Select one electron and one charged pion.
 - At least two photon showers and one π^0 .
 - Two-body-decay:

- One undetected neutrino with missing energy $E_{miss} > 0.43 GeV$.
- Blind analysis to avoid possible bias.

• No excess of events is observed over the background.

- Hadronic, electromagnetic, and radiative decays of the J/ψ have been widely studied, weak decays seldom searched before, especially for purely hadronic processes.
- Kinematically, the J/ψ cannot decay to a pair of charmed D mesons, but can decay to a single D meson.
- The weak decay of charmonium are rare decays. Searches for weak decays of charmonium to single D or D_s mesons provide tests of standard model (SM) theory and serve as a probe of new physics.

Search for $J/\psi \rightarrow D^-e^+\nu_e^-$, $D^- \rightarrow K^+\pi^-\pi^-$

- A search based on 10B Jpsi sample
- Umiss = Emiss c |pmiss|
- a fit on **Umiss** distribution to extract the signal.
- Two main backgrounds:
 - Gamma conversion with *e* misid: $J/\psi \rightarrow \rho\pi \rightarrow \gamma\gamma\pi\pi \rightarrow \gamma ee\pi\pi$;
 - π/K misid : $J/\psi \rightarrow \gamma \eta (1405) \rightarrow \gamma K K^0 \pi \rightarrow \gamma \pi \pi \pi K$

BESI Search for $\Sigma^- \to pe^-e^-$ and $\Sigma^- \to \Sigma^+ X$

- Two down-type (d or s) quarks convert up-quarks[1-2], similar to 0νββ
- Blind analysis
- Double tag (DT)
 - ✓ ST events: $J/\psi \to \overline{\Sigma}(1385)^+\Sigma^- + c.c., \overline{\Sigma}(1385)^+ \to \pi^+\overline{\Lambda}(\to \overline{p}\pi^+),$ save all $\overline{\Sigma}(1385)^+$ candidates; fit the recoil mass of $\overline{\Sigma}(1385)^+$.

 B_1^-

$$N_{\rm ST} = 147743 \pm 563_{\rm stat.}$$

1-

1-

 B_{2}^{+}

 $\nu = \overline{\nu}$

 B_0

$$B(J/\psi \rightarrow \overline{\Sigma}(1385)^{+}\Sigma^{-})$$

= (3.21 ± 0.07_{stat.})×10⁻⁴

PRD 103 (2021) 052011

C. Barbero, G. Lopez Castro, and A. Mariano, Phys. Lett. B 556, 98 (2003).
 C. Barbero, L. F. Li, G. Lopez Castro, and A. Mariano, Phys. Rev. D 76, 116008 (2007); Phys. Rev. D 87, 036010 (2013).

BESIT Results: $\Sigma^- \to pe^-e^-$ and $\Sigma^- \to \Sigma^+ X$

✓ **DT** events:

- ✓ in the recoil side of the selected ST events
- $\checkmark \quad \Sigma^- \to p e^- e^-; \Sigma^- \to \Sigma^+ (\to p \pi^0) X;$
- ✓ ULs @90 CL: Frequentist method with unbounded profile likelihood treatment of systematic uncertainties.

$$\mathcal{P}(\Lambda) = \frac{\mathcal{B}(J/\psi \to pK^{-}\Lambda)}{\mathcal{B}(J/\psi \to pK^{-}\overline{\Lambda})} = \frac{N_{\rm WS}^{obs}/\epsilon_{\rm WS}}{N_{\rm RS}^{obs}/\epsilon_{\rm RS}}$$

Most of the systematic uncertainties cancelled.

• The oscillation parameter

$$(\delta m_{\Lambda\bar{\Lambda}})^2 = \frac{\mathcal{P}(\Lambda)}{2 \cdot (\tau_{\Lambda}/\hbar)^2}$$

Dayong Wang

13

Total systematic uncertainty ($\sim 1\%$).

- Upper limit is obtained by utilizing a frequentist method.
- Upper limit on oscillation rate (90% C.L.) $P(\Lambda) < 4.4 \times 10^{-6}$
- Oscillation parameter (90% C.L.)

 $\delta m_{\Lambda\bar{\Lambda}} < 3.8 \times 10^{-15} \text{ MeV}$

Data: the dot with error bar MC: the pink filled histogram, normalized arbitrarily RS:

Data: the dots with error bars Signal shape: MC shape \otimes Gaussian Background shape: inclusive MC sample after excluding RS events

- BESIII performed wide range study of exotic decays and new physics, with many first search or best limit
- The latest searching results are reported
 - Charged LFV decay $J/\psi o e^\pm au^\mp$
 - Charmonium weak decay: $J/\psi \rightarrow D^-e^+\nu_e$
 - LNV and BNV : $\Sigma^- \rightarrow pe^-e^-$ and $\Sigma^- \rightarrow \Sigma^+ X$ PRD 103 (2021) 052011
 - $\Delta B=2$ process: $\Lambda \overline{\Lambda}$ oscillation
- BESIII has great potential with unique datasets and analysis techniques
 - ...More to come!

Future Physics Programme of BESIII *Chinese Phys. C* **44**, 040001 (2020).

Preliminary

Phys. Rev. D 103, 112007 (2021)

JHEP 06 (2021) 157

Thanks!