Search for rare kaon decays at the J-PARC KOTO experiment

Koji Shiomi (KEK) for the KOTO collaboration 20th LOMONOSOV CONFERENCE 2021/8/21

Physics on $K_L \rightarrow \pi^0 \nu \nu$ **Standard Model** CP odd CP even *d** π^{0} CP odd W^{-} s Z^0 CP odd $\overline{\nu}$

Rare, Theoretical clean, CP violation

Branching ratio(BR) = $(3.0\pm0.3)\times10^{-11}$ The uncertainties mainly come from the CKM parameter errors, The theoretical uncertainties are only 2%.

Experimental search for $K_L \rightarrow \pi^0 \nu \nu$

Open Access

Search for $K_L o \pi^0 \nu \bar{\nu}$ and $K_L o \pi^0 X^0$ Decays at the J-PARC KOTO Experiment

J. K. Ahn *et al.* (KOTO Collaboration) Phys. Rev. Lett. **122**, 021802 – Published 15 January 2019

<u>Direct limit (KOTO 2015)</u> $B_{K_L \to \pi^0 \nu \overline{\nu}} < 3.0 \times 10^{-9}(90 \% \text{ CL})$ <u>Indirect limit</u> $B_{K_L \to \pi^0 \nu \nu} < 6.4 \times 10^{-10}(68 \% \text{ CL})$

eriment

GeV Main Ring.

Collaboration meeting with Zoom(July 2021)

Experimental principle

$K_{L} \rightarrow \pi^{0} \nu \overline{\nu}$ decay

" $2\gamma + Nothing + Pt$ "

Assuming 2γ from π^{0} , Calculate z vertex.

Data Accumulation History

2016-18 data analysis

- Preliminary results at Kaon conference in September 2019
- Post-unblind analysis
- Final results

Preliminary results at Kaon 2019

-Observed 4 candidate events inside the signal box -Reported @ Kaon2019

-Determined selection criteria and opened signal box in Aug. 2019.

#Bkg estimation table before opening signal box

	#BG
$K_L \rightarrow 2\pi^0$	<0.18
$K_L \rightarrow \pi^+ \pi^- \pi^0$	< 0.02
$K_L \rightarrow 3\pi^0 + accid.$	< 0.04
Ke3 + accid.	< 0.09
$K_L \rightarrow 2\gamma$	0.00±0.00
⁹ Upstream π^{0}	0.00±0.00
$CV-\pi 0$	<0.1
CV-n	0.03±0.01
Hadron cluster	0.02±0.00
Total	0.05±0.02

Post-unblind analysis

- No change in cuts
- Found an error in timing parameters. $4 \rightarrow 3$ events by fixing it.
- Found two new background sources, and updated background estimation.

Halo $K_L \rightarrow 2\gamma$ Backgrounds found in post-unblind analysis

skim.root 44

K[±] in the beam Backgrounds found in post-unblind analysis

 K[±] yield was evaluated by a special run to collect $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ in June 2020.

- 3 clusters on CSI
- vertex reconstruction π
- π^{\pm} reconstruction assuming transverse momentum balançe

0.81 inside the signal region

The Final results of 2016-2018 data analysis

Single Event Sensitivity = $(7.20 \pm 0.05_{stat} \pm 0.66_{syst}) \times 10^{-10}$

Final PT vs Z plot

Black: observed, Red: expected BG, Contour: signal MC

PHYSICAL REVIEW LETTERS **126**, 121801 (2021)

Editors' Suggestion

Study of the $K_L \rightarrow \pi^0 \nu \bar{\nu}$ Decay at the J-PARC KOTO Experiment

J. K. Ahn,¹ B. Beckford,² M. Campbell,² S. H. Chen,³ J. Comfort,⁴ K. Dona,² M. S. Farrington,⁵ K. Hanai,⁶ N. Hara,⁶ J. K. Ahli, B. Beckfold, M. Campbell, S. H. Chell, J. Comfolt, K. Doha, M. S. Parhligton, K. Hahai, N. Hafa, H. Haraguchi,⁶ Y. B. Hsiung,³ M. Hutcheson,² T. Inagaki,⁷ M. Isoe,⁶ I. Kamiji,⁸ T. Kato,⁶ E. J. Kim,⁹ J. L. Kim,⁹ H. M. Kim,⁹ T. K. Komatsubara,^{7,10} K. Kotera,⁶ S. K. Lee,⁹ J. W. Lee,^{6,*} G. Y. Lim,^{7,10} Q. S. Lin,⁵ C. Lin,³ Y. Luo,⁵ T. Mari,⁶ T. Masuda,¹¹ T. Matsumura,¹² D. Mcfarland,⁴ N. McNeal,² K. Miyazaki,⁶ R. Murayama,^{6,†} K. Nakagiri,^{8,‡} H. Nanjo,^{8,§} H. Nishimiya,⁶ Y. Noichi,⁶ T. Nomura,^{7,10} T. Nunes,⁶ M. Ohsugi,⁶ H. Okuno,⁷ J. C. Redeker,⁵ J. Sanchez,² M. Sasaki,¹³ N. Sasao,¹¹ T. Sato,⁷ K. Sato,^{6,¶} Y. Sato,⁶ N. Shimizu,⁶ T. Shimogawa,^{14,¶} T. Shinkawa,¹² S. Shinohara,^{8,§} K. Shiomi,^{7,10} R. Shiraishi,⁶ S. Su,² Y. Sugiyama,^{6,¶} S. Suzuki,¹⁴ Y. Tajima,¹³ M. Taylor,² M. Tecchio,² M. Togawa,^{6,¶} T. Toyoda,⁶ Y.-C. Tung,^{5,**} Q. H. Vuong,⁶ Y. W. Wah,⁵ H. Watanabe,^{7,10} T. Yamanaka,⁶ H. Y. Yoshida,¹³ and L. Zaidenberg²

(KOTO Collaboration)

 N_{obs} (=3) is statistically consistent with N_{BG} (=1.22±0.26).

2019-2021 data analysis

- Detector upgrade - Further Background rejection

Detector upgrade

 Upstream charged Veto(UCV) against K[±] background

160 mm (design)

Installed a prototype in 2020. •

K_L beam

Upgraded in 2021

Calorimeter's both-end readout ulletagainst neutron background

(vacuum)

Calorimeter's both read out

Calorimeter upgrade

Downstream charged veto (DCV)

to suppress $K_L \rightarrow \pi^+\pi^-\pi^0$ background

Upstream charged veto(UCV) To veto K[±] in beam

- Prototype (installed in 2020)
 - Plate with 1-mm square scintillating fibers read out by MPPC
 - 30% inefficiency due to a limited coverage, insensitive region, and irradiation effect.

- New UCV (Updated in 2021)
 - Plate with 0.5-mm square scintillating fibers read out by MPPC

UCV

K±

 Fully cover beam, tilt detector, and put MPPC far from beam.

The performance of new UCV

- evaluate efficiency in a short time
 - beam line

- Shower shape consistency
 - Likelihood Rat
- MVA using the reconstructed kinematic variables

- intensity beam (\sim 100 KW) after the MR power supply upgrade.

• Rough estimation of the single event sensitivity for Run81-87 is 5×10^{-10}

Physics data taking will be resumed from fall (winter) of 2022 with a higher

Summary

- The KOTO experiment studies the $K_L \rightarrow \pi^0 \nu \nu$ decay
- Results of the 2016-2018 analysis has been published
 - The single event sensitivity is 7.2×10^{-10}
 - 3 observed events is consistent with the estimated 1.22±0.26 background events
- KOTO will continue to take data and improve sensitivity by reducing background events with new detectors and improved analysis methods.