Charged Lepton Flavor Violation Experiments

Jim Miller Boston University Lomonosov, August 21, 2021

Outline

- 1) Introduction to cLFV Experiments and current status of some of the measurements
- 2) Dedicated, ongoing or developing, *muon* experiments
- 3) The outlook for the future

Lepton Flavor Conservation

• The sum of each lepton flavor is conserved! Muon Decay: $\mu^- \rightarrow e^- + \gamma$ $\mu^- \rightarrow e^- + \overline{v_e} + v_{\mu}$ Muon to electron conversion: $\mu^- + N \rightarrow e^- + N$

Lepton Flavor Conservation

- Neutrinos oscillate! e.g. $V_e \Leftrightarrow V_{\mu}$
- Lepton flavor is not conserved in this process
- Lepton Flavor Violation has not been observed when charged leptons are involved
- It is not known what the mechanism are for Lepton Flavor conservation or for it s violation
- Necessary to study lepton conservation properties of charged leptons to help figure this out

Charged Lepton Flavor Violation (CLFV) in the Standard Model muon Decay via

Forbidden in pre-neutrino osc. SM

Charged Lepton Flavor Violation (cLFV) in the Standard Model muon Decay via

- Forbidden in the SM
- In v-SM, possible but extremely suppressed

(rate ~ Δm_v^4 / M_w^4 < 10⁻⁵⁰)

Charged Lepton Flavor Violation (CLFV) in the Standard Model

- Forbidden in the SM
- In v-SM, extremely suppressed (rate ~ Δm_v^4 / M_w^4 < 10⁻⁵⁰)
- However, many New Physics models are compatible with rates observable at next generation cLFV experiments

Some cLFV Processes

Process	Current Limit	Next Generation exp			
D decays	BR< ~1E-9	LHC			
$\tau \rightarrow \mu \gamma$	BR < 6.8 E-8	10 ⁻⁹ - 10 ⁻¹⁰ (Belle II)			
τ → μμμ	BR < 3.2 E-8				
$\tau \rightarrow eee$	BR < ² 3.6 E ² -8 ^{10⁻¹¹}				
$K_L \rightarrow e\mu$	BR < 4.7 E-12				
$K^+ \rightarrow \pi^+ e^- \mu^+$	BR < 1.3 E-11				
$B^0 \rightarrow e\mu$	BR < 1.0 E-9	LHCb, Belle II			
B⁺ → K⁺eµ	BR < 9.1 E-8				
μ+ → e+γ	BR < 4.2 E-13	6x10 ⁻¹⁴ (MEG 2)			
μ⁺ → e⁺e⁺e⁻	BR < 1.0 E-12	10 ⁻¹⁶ (Mu3e Phase 2-PSI)			
µ⁻N → e⁻N	R _{μe} < 7.0 E-13	Few x 10 ⁻¹⁷ (Mu2e, COMET)			
$\mu^+ e^- ightarrow \mu^- e^+$	$P_{M\bar{M}} \le 8.2E - 11$				
μ⁻N → e⁺N	R < 1.7 E-12	Mu2e			
0νββ					

• Some of the most promising cLFV measurements use muons

Current tau decay limits and projected Belle II

2018

https://scipost.org/SciPostPhysProc.1

Charged Lepton Flavor Violation: ATLAS-LHC

Current ATLAS limits on the branching fractions for the LFV decays of Z and Higgs bosons, as obtained at 95% of CL, along with the corresponding dataset.

Process	Current limit	Dataset	HL-LHC prospects (3000 fb ⁻¹)
Z → eµ	B < 7.5 × 10−7	8 TeV, 20 fb−1	
$Z \rightarrow eT$	B < 5.8 × 10−5	13 TeV, 36 fb−1	B ≪9.8 × 10−6 (LEP)
	B < 8.1 × 10−6	13 TeV 139 fb-1	Oct 2020, better than LEP!
$Z ightarrow \mu au$	B < 1.3 × 10−5	8 TeV, 20 fb−1 and	B ≪1.2 × 10−5 (LEP)
		13 TeV, 36 fb−1	
	B < 9.5 × 10−6	13 TeV 139 fb-1	Oct 2020, better than LEP!
$H \rightarrow e \mu$	B < 6.1 × 10−5	13 TeV, 139 fb−1	
$H \rightarrow er$	B < 0.47%	13 TeV, 36 fb−1	B<0.05%
$H \rightarrow \mu \tau$	B < 0.28%	13 TeV, 36 fb−1	B <0.05%
The evenha	""	D limits that will be impr	ioved upon at LUC

The symbol "«" are current LEP limits that will be improved upon at LHC. T. Davodek, L. Fiorini, Frontiers in Physics, <u>https://doi.org/10.3389/fphy.2020.00149</u> (2020)

Related Issue: Lepton Non-universality

Recent result from LHCb, arxiv:2103.11769v1

$$R_{K} = \frac{Br(B^{+} \to K^{+} + \mu^{+} + \mu^{-})}{Br(B^{+} \to K^{+} + e^{+} + e^{-})} = 0.846_{-0.041}^{+0.044}$$

3.1 s.d. from the SM prediction of 1

New Physics models generally predict Lepton Flavor Violation if Universality is violated

Why Muons?

Different SUSY and non-SUSY BSM models

Altmannshofer et al., NPB 830, 17 (2010)

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*	*	*	***	***	*	?
$A_{\rm 7,8}(B\to K^*\mu^+\mu^-)$	*	*	*	***	***	**	?
$A_{\rm 9}(B\to K^*\mu^+\mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \rightarrow \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu ightarrow e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \to e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\star \star \star$ signals large effects, $\star \star$ visible but small effects and \star implies that the given model does not predict sizable effects in that observable.

Why Muons?

Different SUSY and non-SUSY BSM models

Altmannshofer et al., NPB 830, 17 (2010)

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*	*	*	***	***	*	?
$A_{\rm 7,8}(B\to K^*\mu^+\mu^-)$	*	*	*	***	***	**	?
$A_9(B\to K^*\mu^+\mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \rightarrow \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	$\star\star\star$
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\star \star \star$ signals large effects, $\star \star$ visible but small effects and \star implies that the given model does not predict sizable effects in that observable.

Why Muons(2)?

- Relatively easy to produce copious numbers of muons
- Muons are relatively long-lived
- Muons can be stopped in material and localized
- Several experiments now under development are dedicated to looking for cLFV with stopped muons

 $\mu^+ \rightarrow e^+ \gamma$ (MEG at PSI)

 $\mu^+ \rightarrow e^+ e^+ e^-$ (Mu3e at PSI)

 $\mu^- N \rightarrow e^- N$ (Mu2e at FNAL, COMET at J-PARC, DeeMe at J-PARC)

New Physics Contributions to $\mu N \rightarrow eN$

 $\mu N \rightarrow eN$ sensitive to wide array of New Physics models

Many Muon Experiments over the Years

$\mu^+ \rightarrow e^+ \gamma$ (MEG at PSI)

- Measure back-to-back monoenergetic positron and gamma
- MEG set current best limit on $\mu \rightarrow e\gamma$ branching ratio set by MEG at 4.2e-13 (90% CL)
- Upgrade under way to improve to achieve 6e-14 limit
- Challenges:
 - Need to suppress backgrounds
 - Radiative muon decay (RMD) $\mu^+ \rightarrow e^+ v_e \overline{v}_\mu \gamma$
 - Accidental coincidences between e⁺ from $\mu^+ \rightarrow e^+ v_e \overline{v}_{\mu}$ and a gamma from RMD or positron annihilation in flight
 - Need best possible measurement of energies and of the angle between the gamma and the positron $N_{acc} \propto R_{\mu}^2 \times \Delta E_{\gamma}^2 \times \Delta p_e \times \Delta \Theta_{e^+\gamma}^2 \times \Delta t_{e^+\gamma} \times T$
- MEG currently in engineering runs to commission new equipment
 - -Major improvements in calorimeter energy and position resolutions, new thinner drift chamber, improved timing counters, DAQ handles higher rates
- Increase flux up to 3e7 continuous stopped muons/s compared to ~1e7 previously
 - May be the ultimate rate limit, limiting ultimate $\mu \rightarrow e\gamma$ sensitivity

arXiv:1801.04688v1

$\mu^+ \rightarrow e^+ \gamma$ (MEG at PSI)(2)

- Stop μ + in a thin target using 'surface' muons (28 MeV/c, 7% FWHM)
- Look for back-to-back 53 MeV electron and gamma
- Measure electron momentum and direction in drift chamber in magnetic field
- Measure positron time in timing counters
- Measure energy, position, time of gamma in liquid xenon scintillating calorimeter, UV-sensitive PMT's

$\mu^+ \rightarrow e^+ e^+ e^-$ (Mu3e at PSI)(2)

- Current best experimental limit BR<1e-12 (SINDRUM 1988)
- Phase 1 under construction now at PSI
 - -goal SES 2e-15
 - Use same muon beamline at PSI as MEG (π e5)
 - Currently the most powerful in the world
 - 1e8 stopped muons/s for 2.5e7 seconds to reach sensitivity goal
- Phase 2 goal BR<1e-16 (90% CL)
 - Use high Intensity Muon Beam (HiMB) at PSI planned for >2025?
- Main backgrounds
 - Internal conversions $\mu^+ \rightarrow e^+ e^+ e^- \overline{\nu}_{\mu} \nu_e$ (with very low energy neutrinos)
 - Radiative muon decay followed by conversion in target, $\mu^+ \rightarrow e^+(\gamma \rightarrow e^+e^-)\overline{\nu_{\mu}}\nu_e$
 - \bullet Accidental coincidence between e^+e^- pair from Bhabha scattering of Michel positron from ordinary muon decay, and a Michel positron from another decay
 - Suppress with
 - better than 1 MeV FWHM resolution on energy of eee
 - » Minimize multiple scattering Ultra-thin pixelated Si tracker
 - » challenge is cooling with helium gass
 - Better than few 100 ps time resolution on tracks- use thin timing scintillators
 - High resolution on vertex reconstruction

arXiv:2009.11690v2

$\mu^+ \rightarrow e^+ e^+ e^-$ (Mu3e at PSI)

Figure 2.6: Schematic view of the experiment cut along the beam axis in the phase I configuration.

What it is and how to Search for μ -N \rightarrow e-N

- Stop negative muons in material
- Muon rapidly (10⁻¹⁶s) cascades to 1S state (Al binding ~460 keV, r~20 fm), forming muonic atom
- Two things most likely happen:
 - 1. muon is captured by the nucleus (61%): $\mu^- N_{A,Z} \rightarrow \nu_{\mu} N_{A,Z-1}$

Cause low energy background 2. muon decays in orbit(39%): $\mu^- N_{A,Z} \rightarrow e^- \nu_{\mu} \nu_e N_{A,Z}$ Muonic aluminum lifetime 864 ns 3. Rare, not seen: Muon to electron conversion $\mu^- N_{A,Z} \rightarrow e^- N_{A,Z}$

Muon Capture

How to Search for μ -N \rightarrow e-N

- Stop muon in atom
- Muon rapidly (10⁻¹⁶s) cascades to 1S state (binding ~460 keV, r~20 fm), forming muonic atom
- Circles nucleus, lifetime ~864 ns
- Two things most likely happen:
 1. muon is captured by the nucleus: (61%) μ⁻N_{A,Z}→ν_μN_{A,Z-1}
 2. muon decays in orbit (39%): μ⁻N_{A,Z}→e⁻ν_μν_eN_{A,Z}
 Muonic aluminum lifetime 864 ns
 3. Rare, not seen: Muon to electron conversion μ⁻N_{A,Z}→e⁻N_{A,Z}

Muon Decay-in-Orbit

Searching for μ -N \rightarrow e-N

In μ -N \rightarrow e-N the muon interacts with nucleus leaving it in ground state

- Signature: delayed single isolated electron
- Electron energy is rest mass of the muon minus the nucleus recoil + binding energy:

 $E_{e} = m_{\mu} - E_{NR} - E_{b} \sim 104.97 \text{ MeV} (AI)$

Decay of free muon, $\tau = 2200 \text{ ns:}$ $\mu^- \rightarrow e^- + \overline{\nu_e} + \nu_\mu \quad \text{Max } E_e \approx 53 \text{ MeV}$

Muon bound in atomic orbit, τ =864 ns: $\mu^- + Al \rightarrow e^- + \overline{\nu}_e + \nu_\mu + Al$ Max $E_e \approx 104.96$ MeV Decay in orbit (DIO) background

Searching for μ -N \rightarrow e-N

In μ -N \rightarrow e-N the muon interacts with nucleus leaving it in ground state

- Signature: delayed single isolated electron
- Electron energy is rest mass of the muon minus the nucleus recoil + binding energy:

 $E_e = m_{\mu} - E_{NR} - E_b \simeq 104.97 \text{ MeV} (AI)$

Current and future experimental status of $\mu^- N \rightarrow e^- N$

The ratio of production rate of a monoenergetic conversion electron to the muon nuclear capture rate

$$R_{\mu e} \equiv \frac{\Gamma(\mu^- N(A, Z) \to e^- N(A, Z))}{\Gamma(\mu^- N(A, Z) \to \nu_\mu N(A, Z - 1)^*)}$$

- Current limit 7x10⁻¹³ (90% CL) on Au [SINDRUM II, EJP C 47(2006)337]
- COMET phase I (J-PARC), under construction, begins data 4taking 2024
 - goal of expected sensitivity (SES) ~ 3x10⁻¹⁵, on Al
- Mu2e (FNAL), under construction
 - Run 1 (2025-2026) Al: (SES) 2.3e-16, 5.9e-16 (90% CL), 1.1e-15 (discovery) Also, $\Delta L=2$ $\mu_{13}^{-27} Al \rightarrow e_{11}^{+27} Na^*$ SES 4.0×10^{-16}
 - Run 2 (2029-) Al: (SES) 3x10⁻¹⁷, 8x10⁻¹⁷ (90% CL), 2x10⁻¹⁶ (discovery)
- COMET phase II , planned, goal of expected SES ~ 3x10⁻¹⁷, on Al
- Mu2e-II, under study, goal of expected SES ~ 3x10⁻¹⁸, on AI
- More distant future
 - COMET PRISM (COMET upgrade) develop muon storage ring ~10⁻¹⁸-10⁻¹⁹
 - High intensity muon facility and upgrade of Mu2e at FNAL, ~10⁻¹⁸

Mu2e (Fermilab)

 Run 1 (2025-2026) SES 2.3e-16 x1000 improvement

 Run 2 (starts 2029) SES 3e-17 x10000 improvement

COMET (J-PARC), Phase I and II

<u>COherent Muon to Electron Transitions</u>

How can COMET and Mu2e make such a big leap in sensitivity over previous experiments?

- Large increase in stopped muon rate
 - Solenoidal beamline concept first proposed by Djilkabaev and Lobashev ~1990 https://aip.scitation.org/doi/pdf/10.1063/1.50918
 - A. Place production target in high-field solenoid
 - 1. Captures low E pions in spirals, they decay to muons which spiral down the beam line
 - B. Use negative gradient to 'push' spiraling muon downstream , stop them in (Al) thin target
- Toroidal sections cause vertical drift of spirals, depending on sign and momentum, can use collimators to filter undesirable particles and momenta

How can COMET and Mu2e conversion make such a big leap in sensitivity over previous experiments?(2)

 Use a pulsed muon beam, wait for prompt background to subside before looking for the conversion electron. Most previous experiments used a continuous muon beam, with background mixed in. See details in following talk by S. DiFalco

Experimental advantage of muon to electron conversion experiments compared to $\mu \rightarrow e\gamma$ and $\mu \rightarrow eee$

3. Pro: The conversion electron energy is well above the energies of the electrons from muon decays, while the electrons, positrons, gammas from to $\mu \rightarrow e\gamma$ and $\mu \rightarrow eee$ or $\mu \rightarrow eee$ are in the same energy range as $\mu \rightarrow evv$. As a result accidentals are not nearly as big a problem, which is the limiting factor for future improvements in $\mu \rightarrow e\gamma$. Hole down the middle of detectors avoids almost all low energy decay electrons. 4. Con: Muon capture leads to a lot of neutrons that cause low energy background for the detectors, and some protons that deposit a lot of energy in the straw tubes. Both are manageable.

Mu2e-II at PIP-II

- 1. Goal: another order of magnitude improvement in sensitivity over Mu2e starting in next decade.
- 2. 100 kW pulsed 800 MeV beam extracted on demand with desired time structure
- 3. Upgrades needed beyond Mu2e are being studied and a Snowmass whitepaper is being prepared

For Booster					
Beam energy	800	MeV			
Average current	2	mA			
Pulse length	0.55	ms			
Repetition rate	20	Hz			
For Mu2e-II					
Approximately CW, 162.5 MHz bunches configurable					
Power >100 kW					

Summary

- Lepton Flavor Conservation of charged leptons and violation by neutrinos are central features in the SM, however the underlying mechanism is not understood.
- Tests of charged lepton flavor violation are occurring across the board in collider experiments- LHC, B factories, muon sources...
- Hint of LFV implied from LHCb B decay : tension with SM universality
- Dedicated new high-sensitivity experiments in the muon sector may have highest sensitivity (depends on New Physics model), with mass scales in the hundreds or thousands of TeV.
- Much improved experimental information expected in next few years with improvements continuing into the next decade.

End

Mu2e Signal and Backgrounds

Expected backgrounds or livetime corresponding to 3.6x10²⁰ POT

Charged Lepton Flavor Violation

Process Upper limit at 90% CL on branching fraction

Upper bound o	n ceµ	2 + <i>ceµ</i> 2 1 Te	V 2	
	1	5 /	\np	
$\mu^{-}\mathrm{Au} ightarrow e^{-}A$	Au	7×10^{-13}	0.1×10^{-1}	-6
$\pi^0 o e^{\pm} \mu^{\mp}$		3.6×10^{-1}	10	55
$D^0 o e^{\pm} \mu^{\mp}$		1.3×10^{-8}	3	0.050
$K_L ightarrow e^{\pm} \mu^{\mp}$		4.7×10^{-12}	2	5.0×10^{-6}

JHEP07 (2019) 022

ν -SM predicts tiny cLFV

- LFV is forbidden in the pre neutrino-oscillation SM
 - And we do not know why
- Neutrinos oscillate and therefore violate lepton flavor conservation
 - But we do not know how (what's the mechanism?)
- But LFV involving charged leptons (cLFV) has never been observed
- Given that the (near) conservation of Lepton Flavor is one of the central features of the SM, but we don't know why or how, it has long been a subject of intense experimental investigation
- Even in the v-SM, cLFV is extremely suppressed (rate ~ Δm_v^4 / M_w^4 < 10⁻⁵⁰)
- However, many New Physics models predict rates observable at next generation cLFV experiments

$$^{+}B(\pi \rightarrow \mu \nu_{e}) < 8.0 \times 10,$$

 $B(D \rightarrow e v) < 8.3 \times 10$, $0 \pm \mp$ -10 $\mathsf{B}(\pi \rightarrow e \; \mu \;) < 3.6 \; \times \; 10$ 0 ± - $\mathsf{B}(D \to e \; \mu \;) < 1.3 \, \times \, 10$, $\mathsf{B}(D \rightarrow e \; \upsilon) < 8.8 \times 10$, + + --6 $\mathsf{B}(D \to \pi \ e \ \mu \) \ < 2.9 \ \times \ 10 \ ,$ JHEP07 (2019) 022 + + - $\mathsf{B}(D \to K e \,\mu) < 1.2 \times 10 ,$

Effective Lagrangian and Mass Scale $\mu \rightarrow e\gamma$ and $\mu N \rightarrow eN$

Supersymmetry & Heavy neutrinos $\mu \rightarrow e \gamma$ contribution

Leptoquarks, heavy $Z \dots$ No contribution from $\mu \rightarrow e\gamma$

- Example of two types of effective LFV
 Lagrangian terms, one that is sensitive to
 loops the other to contact interactions,
 relative importance dialed by parameter κ
 Mass scales Λ of Mu2e (muon to electron
- Mass scales Λ of Mu2e (muon to electron conversion) and MEG (μ→eγ) extend to 1000's of TeV
- Mu2e I sensitive to both, MEG to only first term, both important to sort out type of any LFV observed

۲