Probing the flavour of New Physics with dipoles

Luiz Vale Silva

IFIC, UV - CSIC

21 August, 2021

Work in collaboration with S. Jäger (U. Sussex) 20th Lomonosov Conference on Elementary Particle Physics

Luiz Vale Silva (IFIC, UV - CSIC)

NP in dipoles

21 August, 2021 1/18

Outline

Introduction

2) Four-fermion operators

3 Conclusions

Moving beyond the flavour structure of the SM

ightarrow Dipole effects: $\mathcal{L}_{dipole} = e rac{V_{\rm EW}}{\sqrt{2}} \mathcal{C}^{eta lpha}_{\psi \gamma} \bar{\psi}_{eta} \sigma^{\mu
u} P_R \psi_{lpha} F_{\mu
u} + {
m h.c.}$

E.M. form factors: *Magnetic Dipole Moment* (MDM), *Electric Dipole Moment* (EDM)

Flavour transitions: $\mu \to e\gamma$, $\tau \to (e, \mu)\gamma$, $\nu' \to \nu\gamma$, $s \to d\gamma$, $b \to (s, d)\gamma$, etc.

 \rightarrow Multitask tool: flavour structure (e.g., LFV) & CPV sources of the SM & BSM, in quark & lepton sectors [Lomonosov: various talks]

eEDM:
$$|\text{Im}[\mathcal{C}_{e\gamma}^{ee}]| \lesssim (8 \times 10^5 \text{ TeV})^{-2}$$
 [ACME]
 $\mu \to e\gamma$: $\sqrt{|\mathcal{C}_{e\gamma}^{e\mu}|^2 + |\mathcal{C}_{e\gamma}^{\mu e}|^2} \lesssim (4 \times 10^4 \text{ TeV})^{-2}$ [MEG]

$$\mathsf{nEDM}: \quad \left|\mathrm{Im}[\mathcal{C}^{dd}_{d\gamma}]\right|, \left|\mathrm{Im}[\mathcal{C}^{uu}_{u\gamma}]\right| \lesssim (2 \times 10^4 \; \mathrm{TeV})^{-2} \quad \text{(nedm)}$$

 \rightarrow SM highly suppressed: signs of NP are clearly identifiable

 \rightarrow Possibly provide new insights to understand the origin of flavour

SMEFT: new heavy sector much above EW scale

- \rightarrow No discovery of non-SM particles below the EW scale
- \rightarrow Generic NP involving new heavy sector $\sim \Lambda \gg \textit{v}_{\rm EW}$
- \rightarrow Consider operators $Q^{(n)}$ respecting SM local symmetries and containing SM d.o.f. only
- \rightarrow Non-SM interaction strengths $C^{(n)}$ among the d.o.f. that we know

$$\frac{\underline{C^{(5)}} \times \underline{Q^{(5)}}}{\Lambda}, \ \frac{\underline{C^{(6)}} \times \underline{Q^{(6)}}}{\Lambda^2}, \ \frac{\underline{C^{(7)}} \times \underline{Q^{(7)}}}{\Lambda^3}, \ \frac{\underline{C^{(8)}} \times \underline{Q^{(8)}}}{\Lambda^4}, \ \text{etc.}$$

 \rightarrow <u>New weak sector:</u> typically effects from lower-dimensionality operators are more important for low-energy observables

・ロト ・母ト ・ヨト ・ヨト ・ション

Dimension-six operators

 \rightarrow Focus on operators of dimension-six

→ Equations Of Motion (EOMs) eliminate redundant cases: 59 linearly independent operators, with 1350 CP-even + 1149 CP-odd couplings, assuming SM global symmetries, B_{tot} and L_{tot}

Warsaw: X^3 , H^6 , H^4D^2 , ψ^2H^3 , X^2H^2 , ψ^2XH , ψ^2H^2D , ψ^4

 $[\psi \text{ fermions}; D \text{ cov. derivative}; X \text{ field strengths}]$

[Buchmüller, Wyler '86; Grzadkowski, Iskrzyński, Misiak, Rosiek '10]

 $\underbrace{\psi^2 XH}_{\mathcal{L}_{dipole} @ tree} (\bar{q}\sigma^{\mu\nu}d)HB_{\mu\nu}, (\bar{q}\sigma^{\mu\nu}d)\tau^I HW^I_{\mu\nu}, (\bar{q}\sigma^{\mu\nu}T^Ad)HG^A_{\mu\nu}, \text{ etc.} \\ [q, \ell, H (d, u, e) SU(2) \text{ doublet (singlet)}]$

Dimension-six operators

\rightarrow Focus on operators of **dimension-six**

→ Equations Of Motion (EOMs) eliminate redundant cases: 59 linearly independent operators, with 1350 CP-even + 1149 CP-odd couplings, assuming SM global symmetries, B_{tot} and L_{tot}

Warsaw: X^3 , H^6 , H^4D^2 , ψ^2H^3 , X^2H^2 , ψ^2XH , ψ^2H^2D , ψ^4

 $[\psi \text{ fermions}; D \text{ cov. derivative}; X \text{ field strengths}]$

[Buchmüller, Wyler '86; Grzadkowski, Iskrzyński, Misiak, Rosiek '10]

 $\underbrace{\psi^{4} \text{ class: } (\overline{L}L)(\overline{L}L), (\overline{R}R)(\overline{R}R), (\overline{L}L)(\overline{R}R), (\overline{L}R)(\overline{R}L), (\overline{L}R)(\overline{L}R)}_{[q, \ell, H (d, u, e) SU(2) \text{ doublet (singlet)}]}$ Fermi-like

Probing non-dipole operators

Consider $\mathcal{L} = \mathcal{L}_{SM} + \sum_i C_i Q_i$, where C_i scales as Λ^{-2} Mixing with dipole:

$$16\pi^2 \frac{d}{d\ell n(\mu)} C_{\psi^2 X H}(\mu) = \sum_i (C_{\psi^2 X H}, C_{\psi^4}, C_{X^3}, C_{X^2 H^2})_i(\mu) \gamma^{(1\text{-loop})}_{i, \psi^2 X H}$$

 $\{\psi^2 XH, \psi^4, X^3, X^2 H^2\} \xrightarrow[1Loop]{RGE} \psi^2 XH$

[1-loop, e.g.: Alonso, Jenkins, Manohar, Trott '13,
 Cirigliano, Crivellin, Dekens, de Vries, Hoferichter, Mereghetti '19,
 Aebischer, Dekens, Jenkins, Manohar, Sengupta, Stoffer '21]

 $\frac{\text{Example:}}{\left|\operatorname{Im} \tilde{C}_{\ell equ}^{(3),eett}\right| \lesssim (3 \times 10^5 \text{ TeV})^{-2}}$

$$Q_{\ell equ}^{(3)} = (\bar{\ell}^{j} \sigma_{\mu\nu} e) \epsilon_{jk} (\bar{q}^{k} \sigma^{\mu\nu} u)$$

[I]: possible vertices]

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

Probing non-dipole operators

Consider $\mathcal{L} = \mathcal{L}_{SM} + \sum_i C_i Q_i$, where C_i scales as Λ^{-2} Mixing with dipole:

$$16\pi^2 \frac{d}{d\ell n(\mu)} C_{\psi^2 X H}(\mu) = \sum_i (C_{\psi^2 X H}, C_{\psi^4}, C_{X^3}, C_{X^2 H^2})_i(\mu) \gamma^{(1\text{-loop})}_{i, \psi^2 X H}$$

 $\{\psi^2 XH, \psi^4, X^3, X^2 H^2\} \ \underset{1Loop}{\overset{RGE}{\longrightarrow}} \ \psi^2 XH$

[1-loop, e.g.: Alonso, Jenkins, Manohar, Trott '13,
 Cirigliano, Crivellin, Dekens, de Vries, Hoferichter, Mereghetti '19,
 Aebischer, Dekens, Jenkins, Manohar, Sengupta, Stoffer '21]

HERE: 4-fermion ops. for which $\gamma_{i,\psi^2 XH}^{(1-\text{loop})} = 0$ (i.e., no mix. at 1-loop)

 \rightarrow Leading Order mixing with the dipole arriving at 2-loops

\rightarrow Phenomenological implications

Luiz Vale Silva (IFIC, UV - CSIC)

NP in dipoles

21 August, 2021 7 / 18

イロト 不得 トイヨト イヨト ヨヨ ろくつ

Outline

1) Introduction

3 Conclusions

\rightarrow Four-fermions: only $Q_{\ell equ}^{(3)}$ mixes directly w/ dipoles at 1-loop LLLL operators $Q_{\ell equ}^{(1)} \xrightarrow[1Loop]{RGE} Q_{\ell equ}^{(3)} \xrightarrow[1Loop]{RGE} \psi^2 X H$ $= (\bar{\ell}_p \gamma_\mu \ell_r) (\bar{\ell}_s \gamma^\mu \ell_t)$ $Q_{\ell\ell}(prst)$ LRRL operators $Q_{qq}^{(1)}(prst) = (\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$ LRLR operators $Q_{\ell edg}(prst)$ $= (\bar{\ell}_p e_t)(\bar{d}_s q_r)$ $= (\bar{\ell}_p \nu_t)(\bar{u}_s q_r)$ $Q^{(1)}_{\ell eau}(prst)$ $Q_{\ell\nu ua}(prst)$ $= (\bar{\ell}_{p}^{j}e_{r})\epsilon_{jk}(\bar{q}_{s}^{k}u_{t})$ $Q_{\ell a}^{(1)}(prst) = (\bar{\ell}_p \gamma_\mu \ell_r)(\bar{q}_s \gamma^\mu q_t)$ $Q^{(3)}_{\ell e a u}(prst) = (\bar{\ell}^{j}_{p}\sigma_{\mu\nu}e_{r})\epsilon_{jk}(\bar{q}^{k}_{s}\sigma^{\mu\nu}u_{t})$ [Fierzed] LLRR operators $Q_{\ell a}^{(3)}(prst) = (\bar{\ell}_p \gamma_\mu \tau^I \ell_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$ $= (\bar{\ell}_p e_t)(\bar{e}_s \ell_r)$ $Q^{(1)}_{\ell \nu ad}(prst)$ $= (\bar{\ell}_{n}^{j}\nu_{r})\epsilon_{jk}(\bar{q}_{s}^{k}d_{t})$ $Q_{\ell e}(prst)$ **RRRR** operators $Q_{\ell\nu}(prst)$ $= (\bar{\ell}_n \nu_t) (\bar{\nu}_s \ell_r)$ $Q^{(3)}_{\ell\nu ad}(prst)$ $= (\bar{\ell}_{p}^{j}\sigma_{\mu\nu}\nu_{r})\epsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}d_{t})$ $Q_{qu}^{(1)}(prst)$ $= (\bar{q}_{p}^{\alpha}u_{t}^{\beta})(\bar{u}_{s}^{\beta}q_{r}^{\alpha})$ $= (\bar{q}_{p}^{\alpha}T_{\alpha\tilde{\alpha}}^{A}u_{t}^{\tilde{\beta}})(\bar{u}_{s}^{\beta}T_{\beta\tilde{\beta}}^{A}q_{r}^{\tilde{\alpha}})$ $Q_{m}^{(8)}(prst)$ LRLR operators $= (\bar{\ell}_n^j \nu_r) \epsilon_{jk} (\bar{\ell}_s^k e_t)$ $Q_{ad}^{(1)}(prst)$ $= (\bar{q}_{p}^{\alpha}d_{t}^{\beta})(\bar{d}_{s}^{\beta}q_{r}^{\alpha})$ $Q_{\ell\nu\ell e}(prst)$ $Q_{quad}^{(1)}(prst)$ $= (\bar{q}_p^j u_r) \epsilon_{jk} (\bar{q}_s^k d_t)$ $Q_{ad}^{(8)}(prst)$ $= (\bar{q}^{\alpha}_{p}T^{A}_{\alpha\tilde{\alpha}}d^{\tilde{\beta}}_{t})(\bar{d}^{\beta}_{s}T^{A}_{\beta\tilde{\beta}}q^{\tilde{\alpha}}_{r})$ $Q_{auad}^{(8)}(prst)$ $= (\bar{q}_p^j T^A u_r) \epsilon_{jk} (\bar{q}_s^k T^A d_t)$ [Fierzed] LLRR operators

 $Q_{\ell u}(prst)$ $= (\bar{\ell}_n u_t)(\bar{u}_s \ell_r)$ $= (\bar{\ell}_p d_t)(\bar{d}_s \ell_r)$ $Q_{\ell d}(prst)$ $Q_{ae}(prst)$ $= (\bar{q}_n e_t)(\bar{e}_s q_r)$ $Q_{a\nu}(prst)$ $= (\bar{q}_n \nu_t)(\bar{\nu}_s q_r)$

 $Q_{qq}^{(3)}(prst) = (\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$

$Q_{ee}(prst)$	$= (\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$
$Q_{\nu\nu}(prst)$	$= (\bar{\nu}_p \gamma_\mu \nu_r)(\bar{\nu}_s \gamma^\mu \nu_t)$
$Q_{uu}(prst)$	$= (\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{dd}(prst)$	$= (\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$
$Q_{eu}(prst)$	$= (\bar{u}_p \gamma^{\mu} u_r)(\bar{e}_s \gamma_{\mu} e_t)$
$Q_{ed}(prst)$	$= (\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$
$Q_{\nu u}(prst)$	$= (\bar{\nu}_p \gamma_\mu \nu_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{\nu d}(prst)$	$= (\bar{\nu}_p \gamma_\mu \nu_r)(\bar{d}_s \gamma^\mu d_t)$
$Q_{e\nu}(prst)$	$= (\bar{\nu}_p \gamma_\mu \nu_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{ud}^{(1)}(prst)$	$= (\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$
$Q_{ud}^{(8)}(prst)$	$= (\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$Q_{duve}(prst)$	$= (\bar{d}_p \gamma_\mu u_r)(\bar{\nu}_s \gamma^\mu e_t)$

 \rightarrow Focus on light external fermions: \Box LRLR, \Box LRRL, \Box LRLR \rightarrow \Box 1-loop, \Box main focus here (preliminary), \Box ongoing calculation

Contributions proportional to a large Yukawa

Possible enhancements: large Yukawa, strong coupling, color factor

ightarrow In the following: preliminary bounds from $\mu
ightarrow e \gamma$, EDMs

Luiz Vale Silva (IFIC, UV - CSIC)

NP in dipoles

21 August, 2021 10 / 18

Roadmap to phenomenology

Luiz Vale Silva (IFIC, UV - CSIC)

CP violation in light quark dipoles

→ One-loop ADM: $Q_{\ell equ}^{(1)}$, $Q_{\ell equ}^{(3)}$ → Two-loop, y_t -enhancement: $Q_{qu}^{(1)}$, $Q_{qu}^{(8)}$, $Q_{quqd}^{(1)}$, $Q_{quqd}^{(8)}$, → Two-loop: $Q_{qd}^{(1)}$, $Q_{qd}^{(8)}$, $Q_{\ell edq}$

 $(16\pi^2)^2 \frac{d}{d\ell n(\mu)} C_{\psi^2 X H}(\mu) = \left(g_Y^2 \gamma_Y^X + g_L^2 \gamma_L^X + g_C^2 \gamma_c^X + Y^2 \gamma^X\right) \times Y \times C_{\psi^4}(\mu)$

$Q^{(1)}_{qu} = (ar{q}^lpha_{ ho} u^eta_t)(ar{u}^eta_{ ho} q^lpha_r)$			$Q^{(8)}_{qu} = (ar{q}^lpha_{ ho} T^A_{lpha ec lpha} u^{ ilde eta}_t) (ar{u}^eta_s T^A_{eta ec eta} q^{ ilde lpha}_r)$				
$\stackrel{ext}{{\rightarrow}} {\underset{\downarrow}{\rightarrow}}$	X = B	X = W	X = G	$\stackrel{ext}{{\rightarrow}}_{int}\downarrow$	X = B	X = W	X = G
γ_Y^X	$-\frac{1655}{6912}$	$+\frac{701}{2304}$	$+\frac{7}{72}$	γ_Y^X	$-\frac{1655}{1296}$	$+\frac{701}{432}$	$-\frac{679}{576}$
γ_L^X	$+\frac{587}{768}$	$-\frac{923}{768}$	$+\frac{5}{8}$	γ_L^X	$+\frac{587}{144}$	$-\frac{923}{144}$	$-\frac{935}{192}$
γ_c^X	$-\frac{20}{9}$	$-\frac{4}{3}$	$+\frac{11}{3}$	γ_c^X	$+\frac{760}{27}$	$+\frac{152}{9}$	$+\frac{446}{9}$

 $\rightarrow X = G$: Chromo-Magnetic Dipole Moment

Luiz Vale Silva (IFIC, UV - CSIC)

21 August, 2021 12 / 18

Light quark dipole moments, pheno

\rightarrow Electric Dipole Moment:

$$\begin{split} \mathcal{C}_{u\gamma}(\mu) &\simeq \frac{1}{(16\pi^2)^2} \times \ell n \left(\frac{\hbar^2}{\mu^2}\right) \times y_{top} \times \left\{ \mathcal{C}_{qu}^{(1)}(\Lambda) \left(-0.9 \times g_L^2 + 0.4 \times g_c^2\right) + \mathcal{C}_{qu}^{(8)}(\Lambda) \left(-4.8 \times g_L^2 - 5.6 \times g_c^2\right) \right\} \\ \to \text{Chromo-MDM generates a CPV } \pi \text{NN coupling} \qquad \text{[see, e.g., Pospelov, Ritz '05]} \\ \mathcal{C}_{uG}(\mu) &\simeq \frac{1}{(16\pi^2)^2} \times \ell n \left(\frac{\hbar^2}{\mu^2}\right) \times y_{top} \times \left\{ \mathcal{C}_{qu}^{(1)}(\Lambda) \left(-0.3 \times g_L^2 - 1.8 \times g_c^2\right) + \mathcal{C}_{qu}^{(8)}(\Lambda) \left(2.6 \times g_L^2 - 24.8 \times g_c^2\right) \right\} \\ &= \frac{\left| \begin{array}{c} y_{top} \times \left| \text{Im} \{ \tilde{\mathcal{C}}_{qu}^{(1)}(\Lambda) \} \right| \right| \\ y_{top} \times \left| \text{Im} \{ \tilde{\mathcal{C}}_{qu}^{(1)}(\Lambda) \} \right| \right| \\ \frac{\left| d_N \right| \qquad \mathcal{O}(10^{-4}) \text{ TeV}^{-2} \qquad \mathcal{O}(10^{-5}) \text{ TeV}^{-2}}{\left| \mathcal{O}(10^{-7}) \text{ TeV}^{-2} \right|} \end{split}$$

ightarrow Wilson coefficients $\lesssim (700 \text{ TeV})^{-2} - (3000 \text{ TeV})^{-2}$

 \rightarrow No dynamical tops below EW scale: effects from mix in SMEFT

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Charged light lepton dipoles

→ One-loop ADM: $Q_{\ell equ}^{(1)}$, $Q_{\ell equ}^{(3)}$ → Two-loop, y_{τ} , y_{b} -enhanced: $Q_{\ell e}$, $Q_{\ell edq}$

$$(16\pi^2)^2 \frac{d}{d\ell n(\mu)} C_{\psi^2 X H}(\mu) = \left(g_Y^2 \gamma_Y^X + g_L^2 \gamma_L^X + g_C^2 \gamma_c^X + Y^2 \gamma^X\right) \times Y \times C_{\psi^4}(\mu)$$

$Q_{\ell e} = (ar{\ell}_{ ho} e_t) (ar{e}_{s} \ell_{r})$			$Q_{\ell e d q} = (ar{\ell}_{ ho} e_t) (ar{d}_{s} q_{r})$				
$\stackrel{ext}{{\rightarrow}}$	X = B	X = W	X = G	$\stackrel{ext}{{\rightarrow}}_{int}\downarrow$	X = B	X = W	X = G
γ_Y^X	$+\frac{185}{256}$	$+\frac{331}{768}$	0	γ_Y^X	$-\frac{135}{256}$	$+\frac{619}{768}$	0
γ_L^X	$-\frac{249}{256}$	$-\frac{923}{768}$	0	γ_L^X	$-\frac{345}{256}$	$-\frac{923}{768}$	0
γ_c^X	0	0	0	γ_c^{X}	0	0	0

$$\mathcal{C}_{e\gamma}(\mu) \simeq rac{1}{(16\pi^2)^2} imes \ell n\left(rac{\Lambda^2}{\mu^2}
ight) imes \{-0.2 imes C_{\ell e}(\Lambda) imes \mathbf{y}_{ au} + 0.3 imes C_{\ell edq}(\Lambda) imes \mathbf{y}_b\} imes g_L^2$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Charged light lepton dipoles, pheno

 \rightarrow Mixing below EW scale, e.g., $(\bar{\ell}P_L\ell')(\bar{f}P_Rf)$, $\ell,\ell'=\mu,e$, f=b, au

[Estimate of RGE below EW scale: Crivellin, Davidson, Pruna, Signer '17]

 $\begin{array}{l} \textbf{eEDM: } Q_{\ell e} \\ |\mathrm{Im}\{\tilde{C}_{\ell e}^{e\tau\tau e}(\Lambda)\}| \times y_{\tau} \lesssim \mathcal{O}(10^{-7}) \,\mathrm{TeV}^{-2} \end{array}$

[Similar bounds found by Panico, Pomarol, Riembau '18]

$$egin{aligned} \mu &
ightarrow e \gamma: \; Q_{\ell e} \ &| ilde{C}_{\ell e}^{\mu au au e}(\Lambda)| imes y_{ au} \lesssim \mathcal{O}(10^{-5}) \; ext{TeV}^{-2} \end{aligned}$$

 \rightarrow Wilson coefficients $\lesssim (10 \text{ TeV})^{-2} - (400 \text{ TeV})^{-2}$

[Shifman, Vainshtein, Zakharov '78; Crivellin, Davidson, Pruna, Signer '17; $\gamma\gamma$: Davidson, Kuno, Uesaka, Yamanaka '20]

Luiz Vale Silva (IFIC, UV - CSIC)

NP in dipoles

21 August, 2021 15 / 18

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

 $(\bar{e}P_X\mu)G^A_{\nu\rho}G^{\nu\rho}_A$

Summary, pheno

Outline

Introduction

2 Four-fermion operators

Conclusions

- \rightarrow Dipoles: probe very high energy scales, e.g., EDMs, $\mu \rightarrow e \gamma$
- \rightarrow Generic tool for improving our understanding of flavour and CPV
- \rightarrow SMEFT: systematic approach to deal with new heavy sector
- \rightarrow Here: Leading-Order 2-loop effects generated by operator mixing
- \rightarrow Present measurements already allow strong bounds on NP

Backup

Painting: Moscow by Alexander Pervukhin

Luiz Vale Silva (IFIC, UV - CSIC)

NP in dipoles

21 August, 2021 1 / 4

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary ψ^4

\rightarrow 2-loops in many cases: better bounds than tree and 1-loop

[e.g., (semi-)leptonic, low-energy + LHC: Falkowski, González-Alonso, Mimouni '15 '17]

	Observable	Coupling	Bound
$Q_{qu}^{(1)}$		$y_{top} imes \mathrm{Im}[ilde{C}_{qu}^{(1),uttu}(\Lambda)] $	$\lesssim \mathcal{O}(10^{-6})\mathrm{TeV}^{-2}$
$Q_{qu}^{(8)}$	$Q_{qu}^{(8)}$ Hg-EDM	$y_{top} imes \mathrm{Im}[ilde{C}_{qu}^{(8),uttu}(\Lambda)] $	$\lesssim {\cal O}(10^{-7}){ m TeV}^{-2}$
0	$\mu ightarrow e \gamma$	$y_{ au} imes \sqrt{ ilde{C}^{e au au\mu}_{\ell e}(\Lambda) ^2 + ilde{C}^{\mu au aue}_{\ell e}(\Lambda) ^2}$	$\lesssim {\cal O}(10^{-5})~{ m TeV^{-2}}$
Q _{le} eEDI	eEDM	$y_{ au} imes \mathrm{Im}[ilde{C}^{e au au e}_{\ell e}(\Lambda)] $	$\lesssim {\cal O}(10^{-7}){ m TeV^{-2}}$
$\mu \to e \text{ conv.}$		$y_b imes \sqrt{ ilde{C}^{ebb\mu}_{\ell edq}(\Lambda) ^2 + ilde{C}^{\mu bbe}_{\ell edq}(\Lambda) ^2}$	(1Loop)
Hg-EDM	$y_b imes \mathrm{Im}[ilde{\mathcal{C}}^{ebbe}_{\ell edq}(\Lambda)] $	(1Loop)	
ongoin	ig analysis f	or further operators, channe	ls, and couplings
2-1	oon effects	set most important bounds	in many cases

 $\sqrt{4}$ RGE $\sqrt{2}$ XH proliminary

Luiz Vale Silva (IFIC, UV - CSIC)

・ロト ・ 日 ・ モ ト ・ 日 ト ・ 日 ・ つ つ つ

Summary $\psi^2 H^3$

$\psi^2 H^3 \xrightarrow[2Loop]{R \leftrightarrow D} \psi^2 XH$, preliminary					
Observable	Coupling	Bound			
$\mu ightarrow {\it e} \gamma$	$\sqrt{ \tilde{C}^{e\mu}_{eH}(\Lambda) ^2 + \tilde{C}^{\mu e}_{eH}(\Lambda) ^2}$	$\lesssim 0.02 imes rac{\sqrt{2m_e m_\mu}}{v_{ m EW}^3}$			
eEDM	$ \mathrm{Im}[ilde{C}^{ee}_{e\mathcal{H}}(\Lambda)] $	$\lesssim 0.002 imes rac{\sqrt{2}m_e}{v_{ m EW}^3}$			
h ightarrow e au	$\sqrt{ \tilde{C}^{e au}_{e\!H} ^2+ \tilde{C}^{ au e}_{e\!H} ^2}$	(tree)			
$h ightarrow \mu au$	$\sqrt{ ilde{C}^{\mu au}_{eH} ^2+ ilde{C}^{ au\mu}_{eH} ^2}$	(tree)			
h ightarrow ee	$ \tilde{C}^{ee}_{eH} $	(tree)			
$h ightarrow \mu \mu$	$ \tilde{C}^{\mu\mu}_{eH} $	(tree)			
nEDM	$\left \operatorname{Im}[\tilde{C}_{\psi H}^{\psi \psi}(\Lambda)]\right _{(\psi=u,d)}$	$\lesssim 3 imes rac{\sqrt{2}m_d}{v_{\rm EW}^3}$			
$ \Delta q' , \Delta q = 2$ (q, q' = u, d, s, c, b)	$ ilde{C}^{qq'}_{\psi H} ^2+ ilde{C}^{q'q}_{\psi H} ^2$	(tree)			

2-Loop effects set most important bounds in many cases

Luiz Vale Silva (IFIC, UV - CSIC)

$$\begin{split} \mathcal{B}(h \to e\mu) &< 6.1 \times 10^{-5} \; (95\% \; \text{CL}) \quad \text{[Aad:20190jw]} \\ \mathcal{B}(h \to e\tau) &< 4.7 \times 10^{-3} \; (95\% \; \text{CL}) \quad \text{[Aad:20190gc]} \\ \mathcal{B}(h \to \mu\tau) &< 2.5 \times 10^{-3} \; (95\% \; \text{CL}) \quad \text{[Sirunyan:2017xzt]} \\ \mathcal{B}(\mu \to e\gamma) &< 4.2 \times 10^{-13} \; (90\% \; \text{CL}) \quad \text{[TheMEG:2016wtm]} \\ \mathcal{B}(\tau \to e\gamma) &< 3.3 \times 10^{-8} \; (90\% \; \text{CL}) \quad \text{[Aubert:2009ag]} \\ \mathcal{B}(\tau \to \mu\gamma) &< 4.4 \times 10^{-8} \; (90\% \; \text{CL}) \quad \text{[Aubert:2009ag]} \\ \Delta a_e &= a_e^{\exp} - a_e^{\text{SM}} = -0.88(0.36) \times 10^{-12} \; @ \; 1\sigma \quad \text{[Parker:2018]} \\ \Delta a_\mu &= a_\mu^{\exp} - a_\mu^{\text{SM}} = 268(63)(43) \times 10^{-11} \; @ \; 1\sigma \quad \text{[Tanabash:2018oca]} \\ &|d_e|/e < 1.1 \times 10^{-29} \; \text{cm} \; (90\% \; \text{CL}) \quad \text{[Andreev:2018ayy]} \\ &|d_\mu|/e < 1.8 \times 10^{-19} \; \text{cm} \; (95\% \; \text{CL}) \quad \text{[Bennett:2008dy, PDG]} \\ &|d_Hg|/e < 1.8 \times 10^{-26} \; \text{cm} \; (90\% \; \text{CL}) \quad \text{[Inami:2002ah]} \\ &|d_Hg|/e < 7.4 \times 10^{-30} \; \text{cm} \; (95\% \; \text{CL}) \quad \text{[Gramer:2016ses]} \\ \end{split}$$

Luiz Vale Silva (IFIC, UV - CSIC)

21 August, 2021 4 / 4