Hadronic contributions to the muon anomalous magnetic moment

Tom Blum (UConn/RBRC)

20th Lomonosov Conference on Elementary Particle Physics Moscow State University/Zoom

August 21, 2021

Anomalous moment for the muon, Cern Courier May/June 2021

Credit: Mark Rayner/CERN

Muon g-2 experiments

CERN (1959-1979)

BNL E821(1997-2001)

FNAL E989 (2018-)

Conclusions

- We have determined a_{μ} to an unprecedented 460 ppb precision!
- The Run 1 result
 - -6% of ultimate data sample
 - -15% smaller error than BNL
 - -3.3σ tension with SM

$$a_{\mu}(\text{FNAL}) = 116\,592\,040(54) \times 10^{-11}$$

- After 20 years, we confirm the BNL experimental results!
- Combining BNL/FNAL and comparing to theory \rightarrow 4.2 σ tension

Standard Model Theory: QED+EW+QCD

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www elsevier com/locate/physrep

(2006.0² The anomalous magnetic moment of the muon in the Standard _____ Model

PHYSICS REPORT

Cor T. Aoyama ^{1,2,3}, N. Asmussen ⁴, M. Benayoun ⁵, J. Bijnens ⁶, T. Blum ^{7,8}, Ext M. Bruno⁹, I. Caprini¹⁰, C.M. Carloni Calame¹¹, M. Cè^{9,12,13}, G. Colangelo^{14,*}, HV F. Curciarello ^{15,16}, H. Czyż ¹⁷, I. Danilkin ¹², M. Davier ^{18,*}, C.T.H. Davies ¹⁹, HV M. Della Morte ²⁰, S.I. Eidelman ^{21,22,*}, A.X. El-Khadra ^{23,24,*}, A. Gérardin ²⁵, HV D. Giusti ^{26,27}, M. Golterman ²⁸, Steven Gottlieb ²⁹, V. Gülpers ³⁰, F. Hagelstein ¹⁴, HV M. Hayakawa ^{31,2}, G. Herdoíza ³², D.W. Hertzog ³³, A. Hoecker ³⁴, HL M. Hoferichter ^{14,35,*}, B.-L. Hoid ³⁶, R.J. Hudspith ^{12,13}, F. Ignatov ²¹, HL T. Izubuchi ^{37,8}, F. Jegerlehner ³⁸, L. Jin ^{7,8}, A. Keshavarzi ³⁹, T. Kinoshita ^{40,41}, HI B. Kubis ³⁶, A. Kupich ²¹, A. Kupść ^{42,43}, L. Laub ¹⁴, C. Lehner ^{26,37,*}, L. Lellouch ²⁵, HL I. Logashenko²¹, B. Malaescu⁵, K. Maltman^{44,45}, M.K. Marinković^{46,47}, $\frac{12}{5}$ P. Masjuan^{48,49}, A.S. Meyer³⁷, H.B. Meyer^{12,13}, T. Mibe^{1,*}, K. Miura^{12,13,3} QE S.E. Müller⁵⁰, M. Nio^{2,51}, D. Nomura^{52,53}, A. Nyffeler^{12,*}, V. Pascalutsa¹², Ele M. Passera⁵⁴, E. Perez del Rio⁵⁵, S. Peris^{48,49}, A. Portelli³⁰, M. Procura⁵⁶, HV ^{HV}_{HL} C.F. Redmer ¹², B.L. Roberts ^{57,*}, P. Sánchez-Puertas ⁴⁹, S. Serednyakov ²¹, ^{HL}_{Tot} B. Shwartz ²¹, S. Simula ²⁷, D. Stöckinger ⁵⁸, H. Stöckinger-Kim ⁵⁸, P. Stoffer ⁵⁹, Dif T. Teubner^{60,*}, R. Van de Water²⁴, M. Vanderhaeghen^{12,13}, G. Venanzoni⁶¹, – G. von Hippel¹², H. Wittig^{12,12}, Z. Zhang¹⁸, M.N. Achasov²¹, A. Bashir⁶², Table 1 N. Cardoso⁴⁷, B. Chakraborty⁶³, E.-H. Chao¹², J. Charles²⁵, A. Crivellin^{64,65}, ¹contribi O. Deineka¹², A. Denig^{12,13}, C. DeTar⁶⁶, C.A. Dominguez⁶⁷, A.E. Dorokhov⁶⁸, second V.P. Druzhinin²¹, G. Eichmann^{69,47}, M. Fael⁷⁰, C.S. Fischer⁷¹, E. Gámiz⁷², and the Z. Gelzer²³, J.R. Green⁹, S. Guellati-Khelifa⁷³, D. Hatton¹⁹, orders, N. Hermansson-Truedsson¹⁴, S. Holz³⁶, B. Hörz⁷⁴, M. Knecht²⁵, J. Koponen¹, ^{89]. In} A.S. Kronfeld ²⁴, J. Laiho ⁷⁵, S. Leupold ⁴², P.B. Mackenzie ²⁴, W.J. Marciano ³⁷, measure C. McNeile⁷⁶, D. Mohler^{12,13}, J. Monnard¹⁴, E.T. Neil⁷⁷, A.V. Nesterenko⁶⁸, K. Ottnad¹², V. Pauk¹², A.E. Radzhabov⁷⁸, E. de Rafael²⁵, K. Raya⁷⁹, A. Risch¹², A. Rodríguez-Sánchez⁶, P. Roig⁸⁰, T. San José^{12,13}, E.P. Solodov²¹, R. Sugar⁸¹, K. Yu. Todyshev²¹, A. Vainshtein⁸², A. Vaquero Avilés-Casco⁶⁶, E. Weil⁷¹, J. Wilhelm¹², R. Williams⁷¹, A.S. Zhevlakov⁷⁸

<u>}6]</u>

adronic 8. The ² data, ifferent fs. [37– ilds on

ometry

Hadronic vacuum polarization (HVP) I: data driven (e⁺e⁻)

Data-driven a_{μ} -HVP

 $a_{\mu}^{\text{HVP, LO}} = 693.1(2.8)_{\text{exp}}(2.8)_{\text{sys}}(0.7)_{\text{DV+QCD}} \times 10^{-10}$

More precise than lattice determination. Total error larger than DHMZ and KNT separately.

Data from BABAR, BESIII, CMD-2, KLOE, SND

"Merged" value from DHMZ, KNT, and CHHKS (simple average in each channel for central value, conservative combination of errors). Errors statistical and systematic Hadronic vacuum polarization II: Lattice QCD Blum 2002

24D: $24^3 \times 64$, 4.8 fm box **32D** fine: $32^3 \times 64$, 4.8 fm box **32D**: $32^3 \times 64$, 6.4 fm box

a_{μ} -HVP Summary

(0.75%) HVP (BMW-20): $a_{\mu} = 707.5 (5.5) \times 10^{-10}$

(2.6%) HVP (Lattice): $a_{\mu} = 711.6 (18.4) \times 10^{-10}$

(0.58%) HVP (pheno): $a_{\mu} = 693.1 (4.0) \times 10^{-10}$

Lattice – pheno $\approx 18.5 (18.8)$

BMW-20 – pheno $\approx 14.4 (6.8)$

Towards precise comparisons: the window method [RBC/UKQCD-18]

non-charm' background from experimental results for 1.472512R(eTowardsprecise comparisons: the window method [RBC/UKQCP-14805 lefined to be the result from diagrams with a charm 14 1.4610 uark loop Continented extrapolation What old tien departing is fing enough? 1.4702 .e. the quark-line connected vector current-current cor-15 1.4572elator tha BMeVs20 dylight the kattice ow The subtracted packground includes QED effects for the non-charm and inglet (quark-line disconnected) contributions. The renainder, R_c then included the QED effects associated vith the $c\overline{c}$ loop. The dominant source of uncertainty n R_c comes from the the transmission resonance $(J/\psi$ and v) region and is set by the uncertain typine her for these tates. The fractional uncertainty is approximately the ame for all moments [64, 70]. When the (n-2)th root is aken the fractionation at an erea inty the falls with increasing 202 ſ Good agreement is seen between the phenomenological. esults and our new lattice results for n = 6, 8 and 10, al-hough the lattice results and systematically at the support of the systematically at the support of the systematically at the support of the systematic all y at the systematic all y a

and of the phenomenological range. The flargest discrepancy is a 2.857 tents in the phenomenological range. The flargest discrepthe results of [70] for their minimal selection of datasets. The tension Riscoling for the results of [64]. FIG. 28. Extrapolation to retic moment of the muon and for the results of [64]. Towards precise comparisons: the window method [RBC/UKQCD-18]

- Is lattice continuum limit incompatible with R-ratio result?
- Or do we need even finer lattices?
- Fits to ud connected, 0.4 1.0 fm window:

Aubin et al.

Strange and charm contributions

mply that it is negligible. Using our data we can derive an upper bound nich arises if one were to neglect the disconnected contribution altogether. s useful to real scale of the property of the best of the best of the second of the best o 2.13) (Dv. 9) h gives rise to the iso-vector (I = 1) correlator $G^{\rho\rho}$ and its terpart $G_{eem}^{I=0}$ (so be the cooler hap The iso-vector correlator $G^{\rho\rho}(x_0)$ contains nected diagrams; it is related to the connected light quark contribution elow the Wittig a Lattice HVP workshop $\operatorname{ccording} - G^{\rho\rho}(x_0) = \frac{9}{\operatorname{FHM}} G^{\mu d}(x_0).$ (preliminary) $(\mathbb{D}.7)$ e iso-scalar correlated a GLZ CLS alains both connected and idiscondected con-BMW 20 $(D. GO_0)^{I=0} = \frac{1}{10} G^{ud}(x_0) + G^s(x_0) - G_{disc}(x_0).$ Mainz /CLS 10 $(\mathbb{D}.8)$ sters quantity (D.t.) energiendes helexpression fm $eha \frac{G_{\text{disc}}(x_0)}{G^{\rho\rho}(x_0)} = \frac{G(x_0) - G^{\rho\rho}(x_0)}{G^{\rho\rho}(x_0)} - \frac{1}{9} \left(1 + 9\frac{G^s(x_0)}{G^{\rho\rho}(x_0)}\right).$ (D.9) ortant to realize that the iso-scalar spectral function vanishes below the

abold which implies that $CI=0(m) = O(a^{-3}m_{\pi}x_0)$ for $m \to \infty$. According

Isospin-breaking contributions Lattice HVP: Isospin corrections Needs further study, improvement

V. Gülpers @ Lattice HVP workshop

15

HVP: to reach desired precision (2-5 per-mil)

- Strange, charm, (bottom) contributions in good shape (will not resolve issues)
- FV corrections (L > 6 fm) reliable (NNLO χ PT, LLGS, HP) Important to have a big box (BMW, PACS use L = 10 fm)
- Statistical precision top priority for DW, TM, Wilson (in progress) Improved bounding method, low-lying states for long distance tail
- Physical masses (most groups already)
- More, more precise disconnected and IB calculations needed
- Continuum limit and scale setting (per-mil) are crucial

HVP updates soon

- RBC/UKQCD
 - 3^{rd} lattice spacing, $a^{-1}=2.7$ GeV, 6 fm box
 - Window continuum limit w/3 lattice spacings by Fall
 - 2+1 +2+1+1 correction (expected to be small)
 - Full result w/3 lattice spacings by end of year
 - Error on total below 1%
- Aubin *et al.*
 - NNLO FV and taste breaking (discretization) corrections
 - Improved window and full connected results by end of year

a_{μ} -HLbL from data and models

T. Aoyama, N. Asmussen, M. Benayoun et al.

Physics Reports 887 2020) 1-166

Good agreement between data/dispersive and lattice approaches

T. Aoyama, N. Asmussen, M. Benayoun et al.

Physics Reports 887 2020) 1-166

Fig. 60. Comparison of the π^0 TFF from dispersion theory [21,497] (red), CA [19] (blue), and lattice QCD [22] (yellow). We show both the singly-(left) and the doubly-virtual (right) form factors.

a_{μ} -HLbL from data and models

T. Aoyama, N. Asmussen, M. Benayoun et al.

Physics Reports 887 2020) 1-166

Table 15

Comparison of two frequently used compilations for HLbL in units of 10¹¹ from 2009 and a recent update with our estimate. Legend: PdRV = Prades, de Rafael, Vainshtein ("Glasgow consensus"); N/JN = Nyffeler / Jegerlehner, Nyffeler; J = Jegerlehner.

Contribution	PdRV(09) [475]	N/JN(09) [476,596]	J(17) [27]	Our estimate
π^0, η, η' -poles	111/17)	00(10)	OF AF(12 AD)	93.8(4.0)
π , <i>K</i> -loops/boxes S-wave $\pi\pi$ rescatter	Huge improvement in pole contributions			16.4(2) 8(1)
subtotal	All contributions computed or estimated			69.4(4.1)
scalars	An contributions computed of contrated]
tensors	Errors added in quad for dispersive results			} 1(3)
axial vectors u, d, s-loops / short-c	Errors added linearly for model-dependent results			6(6) 15(10)
c-loop	2.3		2.3(2)	3(1)
total	105(26)	116(39)	100.4(28.2)	92(19)

Lattice HLbL

 $a_{\mu}^{\text{HLBL}} = 7.87 \pm 3.06 \pm 1.77 \times 10^{-10}$

- RBC: first lattice calculation with all errors controlled.
- 1 G core-hours on ALCF's Mira (BG/Q).
- 1st HLbL calculation was done on USQCD resources (Blum, et al., PRL 114 (2015))
- Crucial for Standard Model Comparison
- Included in Muon g-2 Theory Initiative average
 - 92(19)x 10⁻¹¹ (phenomenology)
 - 90(17)x 10⁻¹¹ (phenomenology+lattice)
- Unlikely to explain discrepancy with experiment

Blum, *et al.* (RBC) PRL 124 (2020) Editor's Suggestion

a_{μ} -HLbL outlook

- More data for data-driven approach
- RBC: QED∞ calculation, 10-20% accuracy (5 years)
- New result from Mainz group (arXive:2104.02632)
- Other lattice groups starting (BMW, FHM, ...)
- Combined 10% result (or better) within 5 years possible

Outlook

- Standard Model remarkable success
- Combining BNL and Fermilab experiments and using muon g-2 theory initiative SM value, discrepancy grew from 3.7 to 4.2 σ
- Using BMW20 lattice value for HVP, discrepancy is 1.5 σ
- Consistency of data-driven and lattice HVP calculations crucial for discovery of new physics
- HLbL in good shape- can't rescue SM
- Improved lattice calculations in progress

Acknowledgements

- Work partially supported by US Department of Energy
- Computations done under ALCC at Argonne Large Computing Facility and XSEDE (NSF) at Texas Advanced Computing Center

Further viewing/reading

- Trevor Noah: Physics may be a lie (2:09 minute mark)
- The Muon g-2 Anomaly Explained
- Fermilab E989 announces first results
- An anomalous moment for the muon
- Muon g-2 Theory Initiative white paper