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Conclusions

• We have determined aµ to an unprecedented 460 ppb precision! 

• The Run 1 result
– 6% of ultimate data sample
– 15% smaller error than BNL
– 3.3s tension with SM

• After 20 years, we confirm the BNL experimental results!
• Combining BNL/FNAL and comparing to theory à 4.2s tension
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Standard Model Theory: QED+EW+QCD
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Hadronic corrections to the muon g�2 from lattice QCD T. Blum

Table 1: Standard Model contributions to the muon anomaly. The QED contribution is through �5, EW
�2, and QCD �3. The two QED values correspond to different values of � , and QCD to lowest order (LO)
contributions from the hadronic vacuum polarization (HVP) using e+e� ! hadrons and � ! hadrons, higher
order (HO) from HVP and an additional photon, and hadronic light-by-light (HLbL) scattering.

QED 11658471.8845(9)(19)(7)(30)⇥10�10 [2]
11658471.8951(9)(19)(7)(77)⇥10�10 [2]

EW 15.4(2)⇥10�10 [5]
QCD LO (e+e�) 692.3(4.2)⇥10�10, 694.91(3.72)(2.10)⇥10�10 [3, 4]

LO (�) 701.5(4.7)⇥10�10 [3]
HO HVP �9.79(9)⇥10�10 [6]
HLbL 10.5(2.6)⇥10�10 [9]

The HVP contribution to the muon anomaly has been computed using the experimentally
measured cross-section for the reaction e+e� ! hadrons and a dispersion relation to relate the real
and imaginary parts of �(Q2). The current quoted precision on such calculations is a bit more than
one-half of one percent [3, 4]. The HVP contributions can also be calculated from first principles
in lattice QCD [8]. While the current precision is significantly higher for the dispersive method,
lattice calculations are poised to reduce errors significantly in next one or two years. These will
provide important checks of the dispersive method before the new Fermilab experiment. Unlike
the case for aµ(HVP), aµ(HLbL) can not be computed from experimental data and a dispersion
relation (there are many off-shell form factors that enter which can not be measured). While model
calculations exist (see [9] for a summary), they are not systematically improvable. A determination
using lattice QCD where all errors are controlled is therefore desirable.

In Sec. 2 we review the status of lattice calculations of aµ(HVP). Section 3 is a presentation
of our results for aµ(HLbL) computed in the framework of lattice QCD+QED. Section 4 gives our
conclusions and outlook for future calculations.
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Figure 1: Representative diagrams, up to order �3, in the Standard Model that contribute to the muon
anomaly. The rows, from to top to bottom, correspond to QED, EW, and QCD. Horizontal solid lines
represent the muon, wiggly lines denote photons unless otherwise labeled, other solid lines are leptons,
filled loops denote quarks (hadrons), and the dashed line represents the higgs boson.
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Contribution Section Equation Value ⇥1011 References

Experiment (E821) Eq. (8.13) 116 592 089(63) Ref. [1]

HVP LO (e+e�) Sec. 2.3.7 Eq. (2.33) 6931(40) Refs. [2–7]
HVP NLO (e+e�) Sec. 2.3.8 Eq. (2.34) �98.3(7) Ref. [7]
HVP NNLO (e+e�) Sec. 2.3.8 Eq. (2.35) 12.4(1) Ref. [8]
HVP LO (lattice, udsc) Sec. 3.5.1 Eq. (3.49) 7116(184) Refs. [9–17]
HLbL (phenomenology) Sec. 4.9.4 Eq. (4.92) 92(19) Refs. [18–30]
HLbL NLO (phenomenology) Sec. 4.8 Eq. (4.91) 2(1) Ref. [31]
HLbL (lattice, uds) Sec. 5.7 Eq. (5.49) 79(35) Ref. [32]
HLbL (phenomenology + lattice) Sec. 8 Eq. (8.10) 90(17) Refs. [18–30, 32]

QED Sec. 6.5 Eq. (6.30) 116 584 718.931(104) Refs. [33, 34]
Electroweak Sec. 7.4 Eq. (7.16) 153.6(1.0) Refs. [35, 36]
HVP (e+e�, LO + NLO + NNLO) Sec. 8 Eq. (8.5) 6845(40) Refs. [2–8]
HLbL (phenomenology + lattice + NLO) Sec. 8 Eq. (8.11) 92(18) Refs. [18–32]
Total SM Value Sec. 8 Eq. (8.12) 116 591 810(43) Refs. [2–8, 18–24, 31–36]
Di↵erence: �aµ := aexp

µ � aSM
µ Sec. 8 Eq. (8.14) 279(76)

Table 1: Summary of the contributions to aSM
µ . After the experimental number from E821, the first block gives the main results for the hadronic

contributions from Secs. 2 to 5 as well as the combined result for HLbL scattering from phenomenology and lattice QCD constructed in Sec. 8. The
second block summarizes the quantities entering our recommended SM value, in particular, the total HVP contribution, evaluated from e+e� data,
and the total HLbL number. The construction of the total HVP and HLbL contributions takes into account correlations among the terms at di↵erent
orders, and the final rounding includes subleading digits at intermediate stages. The HVP evaluation is mainly based on the experimental Refs. [37–
89]. In addition, the HLbL evaluation uses experimental input from Refs. [90–109]. The lattice QCD calculation of the HLbL contribution builds on
crucial methodological advances from Refs. [110–116]. Finally, the QED value uses the fine-structure constant obtained from atom-interferometry
measurements of the Cs atom [117].

0. Executive Summary

The current tension between the experimental and the theoretical values of the muon magnetic anomaly, aµ ⌘
(g � 2)µ/2, has generated significant interest in the particle physics community because it might arise from e↵ects
of as yet undiscovered particles contributing through virtual loops. The final result from the Brookhaven National
Laboratory (BNL) experiment E821, published in 2004, has a precision of 0.54 ppm. At that time, the Standard
Model (SM) theoretical value of aµ that employed the conventional e+e� dispersion relation to determine hadronic
vacuum polarization (HVP), had an uncertainty of 0.7 ppm, and aexp

µ di↵ered from aSM
µ by 2.7�. An independent

evaluation of HVP using hadronic ⌧ decays, also at 0.7 ppm precision, led to a 1.4� discrepancy. The situation was
interesting, but by no means convincing. Any enthusiasm for a new-physics interpretation was further tempered when
one considered the variety of hadronic models used to evaluate higher-order hadronic light-by-light (HLbL) diagrams,
the uncertainties of which were di�cult to assess. A comprehensive experimental e↵ort to produce dedicated, precise,
and extensive measurements of e+e� cross sections, coupled with the development of sophisticated data combination
methods, led to improved SM evaluations that determine a di↵erence between aexp

µ and aSM
µ of ⇡ 3–4�, albeit with

concerns over the reliability of the model-dependent HLbL estimates. On the theoretical side, there was a lot of activity
to develop new model-independent approaches, including dispersive methods for HLbL and lattice-QCD methods for
both HVP and HLbL. While not mature enough to inform the SM predictions until very recently, they held promise
for significant improvements to the reliability and precision of the SM estimates.

This more tantalizing discrepancy is not at the discovery threshold. Accordingly, two major initiatives are aimed
at resolving whether new physics is being revealed in the precision evaluation of the muon’s magnetic moment. The
first is to improve the experimental measurement of aexp

µ by a factor of 4. The Fermilab Muon g � 2 collaboration is
actively taking and analyzing data using proven, but modernized, techniques that largely adopt key features of magic-
momenta storage ring e↵orts at CERN and BNL. An alternative and novel approach is being designed for J-PARC. It
will feature an ultra-cold, low-momentum muon beam injected into a compact and highly uniform magnet. The goal
of the second e↵ort is to improve the theoretical SM evaluation to a level commensurate with the experimental goals.
To this end, a group was formed—the Muon g�2 Theory Initiative—to holistically evaluate all aspects of the SM and
to recommend a single value against which new experimental results should be compared. This White Paper (WP) is
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Muon g-2 Theory Initiative

5

(2006.04822 [hep-ph])

E821+E989:  116592061 (41)         0.35 PPM

0.37 PPME821+E989:      251 (59)

Ogxrhbr Qdonqsr 776 &1/1/( 0ż055

:nmscmsr jhrsr SuShjSajc Ss DbhcmbcChpcbs

Ogxrhbr Qdonqsr

intpmSj gnlcoSec/ vvv�cjrcuhcp�bnl.jnbSsc.ogwrpco

Sgd _mnl_kntrl_fmdshblnldms ne sgdltnm hm sgd Rs_mc_qc
Lncdk
S- @nx_l_ 0+1+2+ M- @rltrrdm 3+ L- Adm_xntm 4+ I- Ahimdmr 5+ S- Aktl 6+7+
L- Aqtmn 8+ H- B_oqhmh 0/+ B-L- B_qknmh B_k_ld 00+ L- Bç 8+01+02+ F- Bnk_mfdkn 03+×+
E- Btqbh_qdkkn 04+05+ G- Byxś 06+ H- C_mhkjhm 01+ L- C_uhdq 07+×+ B-S-G- C_uhdr 08+
L- Cdkk_ Lnqsd 1/+ R-H- Dhcdkl_m 10+11+×+ @-W- Dk,Jg_cq_ 12+13+×+ @- Fèq_qchm 14+
C- Fhtrsh 15+16+ L- Fnksdql_m 17+ Rsdudm Fnsskhda 18+ U- Fúkodqr 2/+ E- G_fdkrsdhm 03+
L- G_x_j_v_ 20+1+ F- Gdqcnëy_ 21+ C-V- Gdqsynf 22+ @- Gndbjdq 23+
L- Gnedqhbgsdq 03+24+×+ A-,K- Gnhc 25+ Q-I- Gtcrohsg 01+02+ E- Hfm_snu 10+
S- Hytatbgh 26+7+ E- Idfdqkdgmdq 27+ K- Ihm 6+7+ @- Jdrg_u_qyh 28+ S- Jhmnrghs_ 3/+30+
A- Jtahr 25+ @- Jtohbg 10+ @- Jtoőý 31+32+ K- K_ta 03+ B- Kdgmdq 15+26+×+ K- Kdkkntbg 14+
H- Knf_rgdmjn 10+ A- L_k_drbt 4+ J- L_ksl_m 33+34+ L-J- L_qhmjnuhý 35+36+
O- L_rit_m 37+38+ @-R- Ldxdq 26+ G-A- Ldxdq 01+02+ S- Lhad 0+×+ J- Lhtq_ 01+02+2+
R-D- Lúkkdq 4/+ L- Mhn 1+40+ C- Mnltq_ 41+42+ @- Mxeedkdq 01+×+ U- O_rb_ktsr_ 01+
L- O_rrdq_ 43+ D- Odqdy cdk Qhn 44+ R- Odqhr 37+38+ @- Onqsdkkh 2/+ L- Oqnbtq_ 45+
B-E- Qdcldq 01+ A-K- Qnadqsr 46+×+ O- Ràmbgdy,Otdqs_r 38+ R- Rdqdcmx_jnu 10+
A- Rgv_qsy 10+ R- Rhltk_ 16+ C- Rsóbjhmfdq 47+ G- Rsóbjhmfdq,Jhl 47+ O- Rsneedq 48+
S- Sdtamdq 5/+×+ Q- U_m cd V_sdq 13+ L- U_mcdqg_dfgdm 01+02+ F- Udm_mynmh 50+
F- unm Ghoodk 01+ G- Vhsshf 01+02+ Y- Yg_mf 07+ L-M- @bg_rnu 10+ @- A_rghq 51+
M- B_qcnrn 36+ A- Bg_jq_anqsx 52+ D-,G- Bg_n 01+ I- Bg_qkdr 14+ @- Bqhudkkhm 53+54+
N- Cdhmdj_ 01+ @- Cdmhf 01+02+ B- CdS_q 55+ B-@- Cnlhmftdy 56+ @-D- Cnqnjgnu 57+
U-O- Cqtyghmhm 10+ F- Dhbgl_mm 58+36+ L- E_dk 6/+ B-R- Ehrbgdq 60+ D- Fàlhy 61+
Y- Fdkydq 12+ I-Q- Fqddm 8+ R- Ftdkk_sh,Jgdkhe_ 62+ C- G_ssnm 08+
M- Gdql_mrrnm,Sqtdcrrnm 03+ R- Gnky 25+ A- Góqy 63+ L- Jmdbgs 14+ I- Jnonmdm 0+
@-R- Jqnmedkc 13+ I- K_hgn 64+ R- Kdtonkc 31+ O-A- L_bjdmyhd 13+ V-I- L_qbh_mn 26+
B- LbMdhkd 65+ C- Lngkdq 01+02+ I- Lnmm_qc 03+ D-S- Mdhk 66+ @-U- Mdrsdqdmjn 57+
J- Nssm_c 01+ U- O_tj 01+ @-D- Q_cyg_anu 67+ D- cd Q_e_dk 14+ J- Q_x_ 68+ @- Qhrbg 01+
@- Qncqëftdy,Ràmbgdy 5+ O- Qnhf 7/+ S- R_m Inrè 01+02+ D-O- Rnkncnu 10+ Q- Rtf_q 70+
J- Xt- Sncxrgdu 10+ @- U_hmrgsdhm 71+ @- U_ptdqn @uhkèr,B_rbn 55+ D- Vdhk 60+
I- Vhkgdkl 01+ Q- Vhkkh_lr 60+ @-R- Ygduk_jnu 67

0 Hmrshstsd ne OZqshbkd Zmc MtbkdZq Rstchdr+ Ghfg Dmdqfx :bbdkdqZsnq QdrdZqbg NqfZmhyZshnm �JDJ(+ SrtjtaZ 2/4,/7/0+ IZoZm
1 MhrghmZ Bdmsdq+ QHJDM+ VZjn 240,/087+ IZoZm
2 JnaZxZrghżLZrjZvZ Hmrshstsd enq sgd Nqhfhm ne OZqshbkdr Zmc sgd Tmhudqrd �JLH(+ MZfnxZ Tmhudqrhsx+ MZfnxZ 353,75/1+ IZoZm
3 Rbgnnk ne Ogxrhbr Zmc :rsqnmnlx+ Tmhudqrhsx ne RntsgZlosnm+ RntsgZlosnm RN06 0AI+ Tmhsdc Jhmfcnl
4 KOMGD+ Rnqanmmd Tmhudqrhsè+ Tmhudqrhsè cd OZqhr+ BMQR.HM1O2+ OZqhr+ EqZmbd

× Bnqqdronmchmf _tsgnqr-
D,lZhk Zccqdrr9 LTNM,FL1,SGDNQX,RB?em_k-fnu &F- Bnk_mfdkn+ L- C_uhdq+ R-H- Dhcdkl_m+ @-W- Dk,Jg_cq_+ L- Gnedqhbgsdq+ B- Kdgmdq+ S- Lhad+ @-

Mxeedkdq+ A-K- Qnadqsr+ S- Sdtamdq(-

gssor9..cnh-nqf.0/-0/05.i-ogxrqdo-1/1/-/6-//5
/26/,0462.� 1/1/ Sgd @tsgnqr- Otakhrgdc ax Dkrduhdq A-U- Sghr hr _m nodm _bbdrr _qshbkd tmcdq sgd BB AX,MB,MC khbdmrd &gsso9..bqd_shudbnllnmr-
nqf.khbdmrdr.ax,mb,mc.3-/.(-
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Hadronic vacuum polarization (HVP) I: data driven (e+e-)

FIG. 5. The upper diagrams from left to right show the leading-order (LO) quark-connected, LO
quark-disconnected, LO QED corrections, and an example of next-to-leading order (in ↵) HVP
diagrams. The lower diagrams show the leading quark-connected (left) and quark-disconnected
(right) contributions to the HLbL contribution. Subleading diagrams with up to four quark loops
in light-by-light scattering are not shown.

QED contribution calculated in Ref. [147]. Although the experimental uncertainty on ae

is presently much larger than the theory error, a reduction of uncertainties on a
EXP

e and ↵

by an order of magnitude may be feasible in the next few years [146]. Therefore, strategies
must be devised and methods developed to reduce the theoretical error on a

SM

e on this time
scale. We outline how the lattice-QCD community can contribute to this goal in Sec. III B 3.

1. Hadronic vacuum polarization

The HVP contribution arises from the magnetic parts of the upper diagrams shown in
Fig. 5. The HVP can be computed directly in lattice QCD or using a dispersion relation from
the total cross section of e

+
e
�

! hadrons (R ratio) or ⌧ decays into hadrons and a neutrino.
Lattice gauge theory here requires the inclusion of QED to achieve high precision but, as
usual, is systematically improvable. The dispersive method requires control of perturbative
QCD and an e↵ective description of radiative corrections, which is typically performed in
scalar QED. In the case of ⌧ decays, additional isospin-breaking corrections are needed. In
principle both methods can be improved beyond their current precision. At the moment, the
R-ratio method has the smallest uncertainty; however, in the presence of conflicting BaBar
and KLOE data sets [8, 9] the common choice of inflating local uncertainties in R(s) using
the PDG �

2 prescription is not unique. In order to reduce the dependence on this choice,
a combined lattice and R-ratio analysis which removes parts of the conflicting data sets, as
suggested in Ref. [10], is valuable. Such a combined analysis can now be performed with an
uncertainty of 2.7 ⇥ 10�10, which yields a result consistent with the currently most precise
pure R-ratio result of Ref. [9].

So far the lattice community has computed connected [10, 154–160], disconnected [10, 157,
161], and isospin breaking [10, 162, 163] contributions to the leading-order HVP. In addition,
a dedicated calculation of the next-to-leading order HVP has recently been published in
Ref. [164]. Figure 5 shows a diagrammatic classification of these contributions. In Fig. 6,
we list these recent results which currently approach a total uncertainty of approximately
15 ⇥ 10�10. USQCD members have played a pioneering role in many of these contributions,
such as the first calculation of strong isospin-breaking e↵ects at physical pion mass [162],
the first calculation of QED corrections at physical pion mass [10], as well as the first
calculation of a combined lattice and R-ratio calculation at physical pion mass in lattice

22

Hadronic Vacuum Polarisation, essentials:

Use of data compilation for HVP: How to get the most precise σ0
had? e+e- data:

• Low energies: sum ~35 exclusive channels,
2π, 3π, 4π, 5π, 6π, KK, KKπ, KKππ, ηπ, …,   
[use iso-spin relations for missing channels]

• Above ~1.8 GeV: can start to use pQCD
(away from flavour thresholds), 
supplemented by narrow resonances (J/Ψ, Υ)

• Challenge of data combination (locally in √s):
many experiments, different energy bins,
stat+sys errors from different sources,     
correlations; must avoid inconsistencies/bias

• traditional `direct scan’ (tunable e+e- beams) 
vs. `Radiative Return’ [+ τ spectral functions]

• σ0had means `bare’ σ, but WITH FSR: RadCorrs
[ KNT 18: δaμhad, RadCor VP+FSR ~ 0.8�10-10 ]

Credit: T. Teubner

Need magnetic part:

HVP cross section input
a
had,VP
µ : data analysis

Hadronic cross section input

Alex Keshavarzi (g � 2)µ 4th May 2018 13 / 45

a
had,LOVP

µ =
↵
2

3⇡2

Z 1

sth

ds
s

R(s)K(s), where R(s) =
�
0

had,�(s)

4⇡↵2/3s
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(Experimental data,
isopsin, ChPT...)

Non

-perturbative/

perturbative

(Experimental data,
pQCD,

Breit-Wigner...)

Perturbative

(pQCD)

Must build full hadronic cross section/R-ratio...

Credit: T. Teubner



Data-driven aµ-HVP
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More precise than lattice determination. Total error 
larger than DHMZ and KNT separately. 

Data from BABAR, BESIII, CMD-2, KLOE, SND

“Merged” value from DHMZ, KNT, and CHHKS 
(simple average in each channel for central value, 
conservative combination of errors). Errors statistical 
and systematic

S- :nxZlZ+ M- :rltrrdm+ L- AdmZxntm ds Zk- Ogxrhbr Qdonqsr 776 �1/1/( 0ż055

1-2-6- BnmrdquZshud ldqfhmf ne lncdk,hmcdodmcdms GUO qdrtksr
Sgd ldsgncnknfx- Hm sghr rdbshnm vd cdrbqhad _ oqnbdctqd enq ldqfhmf sgd GUO bnlahm_shnm qdrtksr chrbtrrdc hm sgd
Rdbshnmr 1-2-0+ 1-2-1 _mc 1-2-3+ k_adkdc CGLY+ JMS+ _mc BGGJR qdrodbshudkx-10 Sgd ldqfhmf oqnbdctqd hr sgdqdenqd a_rdc
nm sgd CGLY _mc JMS qdrtksr hm dwbktrhud g_cqnmhb bg_mmdkr hm sgd l_rr q_mfd adknv 0)7FdU _mc nm sgd hmbktrhud
du_kt_shnmr hm sgd u_qhntr &bnlokdldms_qx( ghfgdq,l_rr q_mfdr- Sgd BGGJR qdrtksr _qd hmbktcdc hm sgd ldqfhmf enq sgd
ν!ν� _mc ν!ν�ν/ bg_mmdkr+ vgdqd sgdx _qd _u_hk_akd-

Sgd ehqrs qdpthqdldms enq sghr ldqfhmf oqnbdctqd hr sn ad bnmrdquZshud- Sghr hr lnshu_sdc ax sgd sdmrhnmr nardqudc
adsvddm dwodqhldms_k c_s_ &rdd Rdbshnm 1-1(+ _r vdkk _r ax sgd cheedqdmbdr adsvddm sgd qdrtksr ne bnlahm_shnmr a_rdc
nm sgd r_ld c_s_ hmotsr ats trhmf cheedqdms ldsgncnknfhdr &rdd Rdbshnm 1-2-4(+ vhsg sgdhq u_qhntr _rrtloshnmr nm
sgd jmnvkdcfd ne tmbdqs_hmshdr _mc ne sgdhq bnqqdk_shnmr &rdd Rdbshnm 1-2-5(- Sgd rdbnmc qdpthqdldms hr sn Zbbntms enq
sgd bnqqdkZshnmr ne sgd rxrsdlZshb tmbdqsZhmshdr adsvddm cheedqdms bgZmmdkr+ xhdkchmf _m tm_unhc_akd hmbqd_rd ne sgd sns_k
tmbdqs_hmsx Z1+5+058[- Hmcddc+ _ cds_hkdc rstcx ne sgd tmbdqs_hmshdr hm d_bg bg_mmdk _kknvdc nmd sn hcdmshex 04 rtbg
bnqqdk_sdc tmbdqs_hmsx bnlonmdmsr hm sgd k_sdrs CGLY _m_kxrhr Z5[-

Hm sgd ldqfhmf oqnbdctqd hlokdldmsdc gdqd+ sgd bdmsq_k u_ktd ne ZGUO+ KN
λ hr bnlotsdc _r sgd rtl ne rhlokd _udq_fdr

&h-d-+ sgd _qhsgldshb ld_mr( ne sgd CGLY _mc JMS qdrtksr hm sgd qdkdu_ms g_cqnmhb bg_mmdkr _mc l_rr q_mfdr- Sgd BGGJR
bdmsq_k u_ktdr _qd hmbktcdc hm sgd rhlokd _udq_fdr enq sgd ν!ν� bg_mmdk adknv 0)/FdU+ _r vdkk _r enq sgd ν!ν�ν/

bg_mmdk-
Enq sgd dwodqhldms_k _mc sgdnqdshb_k tmbdqs_hmshdr+ hm d_bg bg_mmdk _mc d_bg qdkdu_ms l_rr q_mfd+ sgd l_whltl ne

sgd CGLY _mc JMS qdrtksr hr s_jdm-11 Bnqqdk_shnmr adsvddm bg_mmdkr _qd s_jdm hmsn _bbntms _r hm sgd CGLY _m_kxrhr-
Sn _bbntms enq sgd b_rdr hm vghbg sgd JMS tmbdqs_hmshdr _qd k_qfdq+ _ pt_cq_shb cheedqdmbd hr sgdm trdc sn du_kt_sd ax
vghbg _lntms sgd bnqqdronmchmf CGLY tmbdqs_hmsx vntkc mddc sn ad dmg_mbdc hm nqcdq sn qd_bg sgd r_ld u_ktd+ rn sg_s
sgd ehm_k tmbdqs_hmsx b_m ad bnmrsqtbsdc ax _cchmf sgdrd _lntmsr sn sgd dwodqhldms_k tmbdqs_hmsx ne sgd CGLY rtl ne
bg_mmdkr+ trhmf _ pt_cq_shb rtl-

Hm d_bg bg_mmdk _mc d_bg qdkdu_ms l_rr q_mfd+ g_ke ne sgd cheedqdmbd adsvddm sgd bdmsq_k u_ktdr ne sgd CGLY _mc JMS
bnlahm_shnmr hr s_jdm _r _m dwsq_ rxrsdl_shb tmbdqs_hmsx- @m dwbdoshnm nbbtqr hm sgd ν!ν� bg_mmdk+ vgdqd sgd l_whltl
adsvddm sghr cheedqdmbd _mc sgd tmbdqs_hmsx qdk_sdc sn sgd sdmrhnm adsvddm sgd A@A@Q _mc JKND ld_rtqdldmsr+ _r
du_kt_sdc ax CGLY Z5[+ hr s_jdm- Sghr _kknvr tr sn rs_x bnmrdqu_shud vghkd _s sgd r_ld shld _unhchmf _mx cntakd,bntmshmf
ne sgd deedbs ne sgd A@A@Q.JKND sdmrhnm+ vghbg g_r _ chqdbs hlo_bs nm sgd cheedqdmbd adsvddm sgd bdmsq_k u_ktdr ne sgd
CGLY _mc JMS qdrtksr- Sghr rxrsdl_shb tmbdqs_hmsx hr sqd_sdc _r hmcdodmcdms adsvddm bg_mmdkr _mc l_rr q_mfdr+ vghbg
hr lnshu_sdc hm o_qs ax sgd e_bs sg_s sgd rhfm ne sgd bnqqdronmchmf _kfdaq_hb cheedqdmbdr adsvddm sgd CGLY _mc JMS
qdrtksr sdmcr sn ektbst_sd q_mcnlkx-

MtldqhbZk qdrtksr- Sgd mtladqr qdpthqdc sn hlokdldms sghr ldqfhmf oqnbdctqd g_ud addm bnkkdbsdc hm Rdbshnm 1-2-4+ hm
o_qshbtk_q+ S_akd 4- Vd nas_hm

ZGUO+ KN
λ + 582)0&1)7(dwo&1)7(rxr&/)6(CU*PBC · 0/�0/

+ 582)0&3)/(· 0/�0/ ) &1-22(

Sghr u_ktd hr a_rdc nm Qder- Z1ż6[+ vghbg rgntkc ad bhsdc hm _mx vnqj sg_s trdr nq ptnsdr Dp- &1-22(+ vhsg l_hm dwodqhldms_k
hmots eqnl Qder- Z26ż78[- Sgd ehqrs dqqnq hm Dp- &1-22( qdedqr sn sgd dwodqhldms_k tmbdqs_hmshdr+ sgd k_qfdrs ne vghbg hr sg_s
ne sgd 1ν bg_mmdk &0)8· 0/�0/(+ enkknvdc ax sg_s _rrnbh_sdc vhsg sgd 2ν bg_mmdk &0)4· 0/�0/(- Sgd bnmsqhatshnm ne sgd
dwodqhldms_k rxrsdl_shb tmbdqs_hmshdr bnqqdk_sdc adsvddm _s kd_rs svn bg_mmdkr _lntmsr sn 0)5 · 0/�0/- Sgd rdbnmc+
rxrsdl_shb dqqnq hr md_qkx bnlokdsdkx r_stq_sdc ax sgd 1ν bg_mmdk+ vgdqd sgd 1)7·0/�0/ tmbdqs_hmsx _rrhfmdc hm Qde- Z5[
_r g_ke sgd cheedqdmbd adsvddm du_kt_shnmr vhsgnts A@A@Q _mc JKND+ qdrodbshudkx+ dwbddcr sgd rxrsdl_shb dqqnq cdehmdc
_r g_ke sgd cheedqdmbd adsvddm sgd CGLY _mc JMS du_kt_shnmr &0)7· 0/�0/(+ _mc hr sgdqdenqd _cnosdc _r sgd rxrsdl_shb
tmbdqs_hmsx hm sgd 1ν bg_mmdk- Vhsg sgd BGR07 mtladq _ants g_ke,v_x hm adsvddm sgd CGLY _mc JMS du_kt_shnmr+ hs
hr bkd_q sg_s hmbktchmf sghr chrodqrhud du_kt_shnm vhkk mns etqsgdq hmbqd_rd sgd tmbdqs_hmsx- Sgd rdbnmc,k_qfdrs cheedqdmbd
adsvddm CGLY _mc JMS nbbtqr hm sgd dmdqfx qdfhnm ˜0)7. 2)6[FdU &/)4· 0/�0/(+ ats hr bnudqdc ax sgd ct_khsx uhnk_shnm
tmbdqs_hmsx+ _r du_kt_sdc ax CGLY Z5[- Sgd bnqqdronmchmf dqqnq+ bnlotsdc _r sgd cheedqdmbd ne sgd du_kt_shnmr ne sgd
GUO bnmsqhatshnm a_rdc nm dhsgdq hmbktrhud c_s_ nq oPBC hmots hm sgd qdfhnm ˜0)7. 1)/[FdU+ bntkc dhsgdq ad bnmrhcdqdc
ne dwodqhldms_k nq rxrsdl_shb nqhfhm- Vd sgdqdenqd chrok_x sghr tmbdqs_hmsx+ bnlokdsdc ax _ rl_kk bnmsqhatshnm eqnl sgd
oPBC b_kbtk_shnm hsrdke+ rdo_q_sdkx hm Dp- &1-22( k_adkdc ——CU*PBC‘‘- Sgd ehm_k dqqnq hr du_kt_sdc _r sgd pt_cq_shb rtl-

10 Vd dlog_rhyd sg_s sghr cndr mns qdoqdrdms _m _ssdlos sn bnlahmd sgdrd qdrtksr+ vghbg vntkc hmunkud du_kt_shmf sgd bnqqdk_shnmr adsvddm sgdl
dsb-
11 Sgd BGGJR tmbdqs_hmshdr _qd mns hmbktcdc gdqd+ vghbg hr lnshu_sdc _r enkknvr9 enq sgd 2ν bg_mmdk+ ansg sgd dwodqhldms_k _mc rxrsdl_shb
tmbdqs_hmshdr _qd adknv sgd tmbdqs_hmsx eqnl sgd chqdbs hmsdfq_shnm- Enq sgd 1ν bg_mmdk+ sghr rshkk gnkcr sqtd enq sgd tmbdqs_hmsx cdqhudc eqnl
dwodqhldms+ ats sgd rxrsdl_shb deedbsr _r drshl_sdc hm Qde- Z3[ _qd rkhfgskx k_qfdq+ hmchb_shmf sg_s bnmsq_qx sn 2ν sgd oqdbhrhnm sg_s b_m ad nas_hmdc
vhsg _ fkna_k ehs hr rkhfgskx vnqrd sg_m eqnl sgd chqdbs hmsdfq_shnm- Bgdbjr ne sgd rhfmhehb_mbd ne sgd u_qh_shnmr trdc enq sgd rxrsdl_shb tmbdqs_hmshdr
_r vdkk _r trhmf dwokhbhs hmots enq sgd hmdk_rshb bg_mmdkr _qd _krn enqdrddm &rdd Rdbshnm 1-2-3(- Fhudm sgd bnmrdqu_shud sqd_sldms ne sgd 1ν bg_mmdk
hm uhdv ne sgd A@A@Q _mc JKND sdmrhnm &rdd Rdbshnm 1-2-0(+ vd sgdqdenqd cn mns rdd _ qd_rnm sn hmbqd_rd sgd tmbdqs_hmsx etqsgdq-
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Hadronic vacuum polarization II: Lattice QCD

FIG. 5. The upper diagrams from left to right show the leading-order (LO) quark-connected, LO
quark-disconnected, LO QED corrections, and an example of next-to-leading order (in ↵) HVP
diagrams. The lower diagrams show the leading quark-connected (left) and quark-disconnected
(right) contributions to the HLbL contribution. Subleading diagrams with up to four quark loops
in light-by-light scattering are not shown.

QED contribution calculated in Ref. [147]. Although the experimental uncertainty on ae

is presently much larger than the theory error, a reduction of uncertainties on a
EXP

e and ↵

by an order of magnitude may be feasible in the next few years [146]. Therefore, strategies
must be devised and methods developed to reduce the theoretical error on a

SM

e on this time
scale. We outline how the lattice-QCD community can contribute to this goal in Sec. III B 3.

1. Hadronic vacuum polarization

The HVP contribution arises from the magnetic parts of the upper diagrams shown in
Fig. 5. The HVP can be computed directly in lattice QCD or using a dispersion relation from
the total cross section of e

+
e
�

! hadrons (R ratio) or ⌧ decays into hadrons and a neutrino.
Lattice gauge theory here requires the inclusion of QED to achieve high precision but, as
usual, is systematically improvable. The dispersive method requires control of perturbative
QCD and an e↵ective description of radiative corrections, which is typically performed in
scalar QED. In the case of ⌧ decays, additional isospin-breaking corrections are needed. In
principle both methods can be improved beyond their current precision. At the moment, the
R-ratio method has the smallest uncertainty; however, in the presence of conflicting BaBar
and KLOE data sets [8, 9] the common choice of inflating local uncertainties in R(s) using
the PDG �

2 prescription is not unique. In order to reduce the dependence on this choice,
a combined lattice and R-ratio analysis which removes parts of the conflicting data sets, as
suggested in Ref. [10], is valuable. Such a combined analysis can now be performed with an
uncertainty of 2.7 ⇥ 10�10, which yields a result consistent with the currently most precise
pure R-ratio result of Ref. [9].

So far the lattice community has computed connected [10, 154–160], disconnected [10, 157,
161], and isospin breaking [10, 162, 163] contributions to the leading-order HVP. In addition,
a dedicated calculation of the next-to-leading order HVP has recently been published in
Ref. [164]. Figure 5 shows a diagrammatic classification of these contributions. In Fig. 6,
we list these recent results which currently approach a total uncertainty of approximately
15 ⇥ 10�10. USQCD members have played a pioneering role in many of these contributions,
such as the first calculation of strong isospin-breaking e↵ects at physical pion mass [162],
the first calculation of QED corrections at physical pion mass [10], as well as the first
calculation of a combined lattice and R-ratio calculation at physical pion mass in lattice

22

HVP contribution to muon g-2 from lattice QCD

Use lattice QCD [Blum, 2003, Lautrup et al., 1971]

+ Blobs: Non-Perturbative quark loops

⇧µ⌫(q) =

Z
d

4
x e

iqxhjµ(x)j⌫(0)i = ⇧̂(q2)
�
qµq⌫ � q

2�µ⌫
�

a
HVP

µ =
⇣↵

⇡

⌘2
Z 1

0

dq
2
f (q2) ⇧̂(q2)

Time Momentum Representation (TMR) [Bernecker and Meyer, 2011]

a
HVP

µ =
X

t

w(t)C (t), C (t) =
1

3

X
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hji (~x , t)ji (0)i
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FIG. 4. Comparison of wtC(t) obtained using R-ratio data
[1] and lattice data on our 64I ensemble.

lation presented here, we only include diagram M. For
the meson masses this corresponds to neglecting the sea
quark mass correction, which we have previously [17] de-
termined to be an O(2%) and O(14%) e↵ect for the pi-
ons and kaons, respectively. This estimate is based on
the analytic fits of (H7) and (H9) of Ref. [17] with ratios
C

m⇡, K

2 /C
m⇡, K

1 given in Tab. XVII of the same reference.
For the hadronic vacuum polarization the contribution of
diagram R is negligible since �mup ⇡ ��mdown and di-
agram O is SU(3) and 1/Nc suppressed. We therefore
assign a corresponding 10% uncertainty to the SIB cor-
rection.

We also compute the O(↵) correction to the vector
current renormalization factor ZV used in C(0) [17, 18]
and find a small correction of approximately 0.05% for
the light quarks.

We perform the calculation of C(0) on the 48I and 64I
ensembles described in Ref. [17] for the up, down, and
strange quark-connected contributions. For the charm
contribution we also perform a global fit using additional
ensembles described in Ref. [22]. The quark-disconnected
contribution as well as QED and SIB corrections are com-
puted only on ensemble 48I.

For the noisy light quark connected contribution, we
employ a multi-step approximation scheme with low-
mode averaging [23] over the entire volume and two levels
of approximations in a truncated deflated solver (AMA)
[24–27] of randomly positioned point sources. The low-
mode space is generated using a new Lanczos method
working on multiple grids [28]. Our improved statisti-
cal estimator for the quark disconnected diagrams is de-
scribed in Ref. [29] and our strategy for the strange quark
is published in Ref. [30]. For diagram F, we re-use point-
source propagators generated in Ref. [31].

The correlator C(t) is related to the R-ratio data
[11] by C(t) = 1

12⇡2

R1
0 d(

p
s)R(s)se�

p
st with R(s) =

3s
4⇡↵2�(s, e+e� ! had). In Fig. 4 we compare a lattice
and R-ratio evaluation of wtC(t) and note that the R-
ratio data is most precise at very short and long dis-
tances, while the lattice data is most precise at interme-
diate distances. We are therefore led to also investigate
a position-space “window method” [11, 32] and write

aµ = aSDµ + aWµ + aLDµ (6)

with aSDµ =
P

t C(t)wt[1 � ⇥(t, t0,�)], aWµ =P
t C(t)wt[⇥(t, t0,�) � ⇥(t, t1,�)], and aLDµ =P
t C(t)wt⇥(t, t1,�), where each contribution is

accessible from both lattice and R-ratio data. We define
⇥(t, t0,�) = [1 + tanh [(t� t0)/�]] /2 which we find to
be helpful to control the e↵ect of discretization errors
by the smearing parameter �. We then take aSDµ and
aLDµ from the R-ratio data and aWµ from the lattice.
In this work we use � = 0.15 fm, which we find to
provide a su�ciently sharp transition without increasing
discretization errors noticeably. This method takes the
most precise regions of both datasets and therefore may
be a promising alternative to the proposal of Ref. [33].

ANALYSIS AND RESULTS

In Tab. I we show our results for the individual as well
as summed contributions to aµ for the window method
as well as a pure lattice determination. We quote sta-
tistical uncertainties for the lattice data (S) and the R-
ratio data (RST) separately. For the quark-connected
up, down, and strange contributions, the computation is
performed on two ensembles with inverse lattice spacing
a�1 = 1.730(4) GeV (48I) as well as a�1 = 2.359(7) GeV
(64I) and a continuum limit is taken. The discretization
error (C) is estimated by taking the maximum of the
squared measured O(a2) correction as well as a simple
(a⇤)4 estimate, where we take ⇤ = 400 MeV. We find
the results on the 48I ensemble to di↵er only a few per-
cent from the continuum limit. This holds for the full
lattice contribution as well as the window contributions
considered in this work. For the quark-connected charm
contribution additional ensembles described in Ref. [22]
are used and the maximum of the above and a (amc)4

estimate is taken as discretization error. The remain-
ing contributions are small and only computed on the
48I ensemble for which we take (a⇤)2 as estimate of dis-
cretization errors.

For the up and down quark-connected and discon-
nected contributions, we correct finite-volume e↵ects to
leading order in finite-volume position-space chiral per-
turbation theory [34]. Note that in our previous pub-
lication of the quark-disconnected contribution [29], we
added this finite-volume correction as an uncertainty but
did not shift the central value. We take the largest ratio
of p6 to p4 corrections of Tab. 1 of Ref. [35] as systematic
error estimate of neglected finite-volume errors (V). For
the SIB correction we also include the sizeable di↵erence
of the corresponding finite and infinite-volume chiral per-
turbation theory calculation as finite-volume uncertainty.
For the QED correction, we repeat the computation us-
ing an infinite-volume photon (QED1 [36]) and include
the di↵erence to the QEDL result as a finite-volume er-
ror. Further details of the QED1 procedure are provided
as supplementary material.

RBC/UKQCD 2018
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Fig. 41. The integrand of Eq. (3.22) for the evaluation of the light-quark contribution to aHVP, LO
µ in the time-momentum representation on Nf = 2+1

lattice ensembles with pion masses of M⇡ = 280MeV (left panel) and M⇡ = 200MeV (right panel). Also shown are the results from reconstructing
the correlator using nmax = 1, . . . , 4 states in Eq. (3.25) and the reconstruction of the long-time tail using a single-exponential extension. Left panel
from Ref. [382], right panel adapted from Ref. [383].

The basic form of the extension of the correlator is given by the spectral representation in a finite volume,

C(x0) =

1X

n=1

Ane�Enx0 , (3.25)

where En is the energy of an energy eigenstate |ni belonging to the representation T1 of the cubic group, and An is
the associated matrix element of the electromagnetic current. Ideally, the low-lying finite-volume spectrum is known
explicitly from a dedicated spectroscopic study, permitting the use of a truncated spectral sum for C(x0) beyond xcut0 [378].
Alternatively, the large-time behavior of the correlator can be modeled in various ways. The simplest model is a single-
exponential extension, i.e., taking only one term in the series of Eq. (3.25) and fixing E1 and A1 from a fit to data at
shorter time separations (using a smeared version of the vector correlator, where available, to extract E1 with better
precision) [369,377]. This model (which is essentially vector-meson dominance) is of course overly simplistic, and while
it tends to describe the data well at heavy pion masses, it becomes a poor description of the very-long-time tail at light
pion mass, where the two-pion channel opens (cf. Fig. 41). A more sophisticated approach in the absence of detailed
spectroscopic information is to model the finite-volume spectrum via the Lüscher formalism [379,380] applied to the
Gounaris–Sakurai parameterization [189] of the timelike pion form factor with parameters �⇢ , M⇢ fixed via a fit to the
lattice data [369,377]. The latter procedure also allows for correcting the leading finite-size effects by calculating the
vector correlator in infinite volume from the timelike pion form factor and calculating aHVP, LOµ from there [377,380,381].
Future studies, however, should perform a dedicated spectroscopic companion study.

A third possibility is to implement rigorous upper and lower bounds on the correlation function [10,11]. These can then
be used to replace the correlation function, at large x0 where noise takes over, by a statistically more precise representation
in terms of these bounds (see below).

We note that the coordinate space representation described in this section is related to the method of time moments
(cf. Section 3.1.3) in that the Taylor expansion of f̃ (x0) in the integrand of Eq. (3.22) yields the sum over time moments
that gives aHVP, LOµ in that method. For a discussion of other related methods see Ref. [384].

3.1.5. Windows in euclidean time
In the aµ integral in Eq. (3.22), it is useful to consider different time regions in order to separate the short- and

long-distance systematic lattice effects (discretization, finite volume, etc.). To this end, the RBC/UKQCD collaboration has
proposed the window method [11], which breaks the time integral into three parts:

aHVP, LOµ = aSDµ + aWµ + aLDµ ,

aSDµ =

⇣ ↵

⇡

⌘2
Z

1

0
dx0 C(x0)ef (x0)[1 � ⇥(x0, t0, �)] ,

aWµ =

⇣ ↵

⇡

⌘2
Z

1

0
dx0 C(x0)ef (x0)[⇥(x0, t0, �) � ⇥(x0, t1, �)] ,

aLDµ =

⇣ ↵

⇡

⌘2
Z

1

0
dx0 C(x0)ef (x0)⇥(x0, t1, �) , (3.26)
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Hm sghr rdbshnm vd dwo‘mc nm ‘ rdkdbshnm ne sdbgmhb‘k cd,
s‘hkr ‘mc ‘cc qdrtksr sn e‘bhkhs‘sd bqnrr,bgdbjr ne chΩdqdms
b‘kbtk‘shnmr ne ZESO HMα ­

Bnmshmttl khlhs- Sgd bnmshmttl khlhs ne ‘ rdkdb,
shnm ne khfgs,pt‘qj vhmcnv bnmsqhatshnmr ZVα hr rgnvm hm
Ehf­ 7­ Vd mnsd sg‘s sgd qdrtksr nm sgd bn‘qrd k‘sshbd chΩdq
eqnl sgd bnmshmttl khlhs nmkx ‘s sgd kdudk ne ‘ edv odq,
bdms­ Vd ‘ssqhatsd sghr lhkc bnmshmttl khlhs sn sgd e‘,
unq‘akd oqnodqshdr ne sgd cnl‘hm,v‘kk chrbqdshy‘shnm trdc
hm sghr vnqj­ Sghr hr hm bnmsq‘rs sn ‘ q‘sgdq rsddo bnmshm,
ttl dwsq‘onk‘shnm sg‘s nbbtqr trhmf rs‘ffdqdc pt‘qjr ‘r
rddm+ d­f­+ hm Qde­ Z31“­

Sgd lhkc bnmshmttl khlhs enq khfgs pt‘qj bnmsqhat,
shnmr hr bnmrhrsdms vhsg ‘ m‘hud onvdq,bntmshmf drshl‘sd
ne ’ZΘ(1 ¡ /σ/4 vhsg Θ ¡ 3// LdU ‘mc rtffdrsr sg‘s
qdl‘hmhmf chrbqdshy‘shnm dqqnqr l‘x ad rl‘kk­ Rhmbd vd
ffmc rtbg ‘ lhkc adg‘uhnq mns itrs enq ‘ rhmfkd pt‘mshsx
ats enq ‘kk rstchdc u‘ktdr ne ZVα vhsg s, q‘mfhmf eqnl /σ2
el sn /σ4 el ‘mc s0 q‘mfhmf eqnl /σ2 el sn 1σ5 el+ vd
rtffdrs sg‘s hs hr q‘sgdq tmkhjdkx sg‘s sgd lhkc adg‘u,
hnq hr qdrtks ne ‘m ‘bbhcdms‘k b‘mbdkk‘shnm ne ghfgdq,nqcdq
sdqlr hm ‘m dwo‘mrhnm hm Z1­ Sghr kdmcr rtoonqs sn ntq
ptnsdc chrbqdshy‘shnm dqqnq a‘rdc nm ‘m !’Z3( drshl‘sd­
Hm etstqd vnqj+ sghr vhkk ad rtaidbs sn etqsgdq rbqtshmx ax
‘cchmf ‘ c‘s‘,onhms ‘s ‘m ‘cchshnm‘k k‘sshbd ro‘bhmf­

Dmdqfw qdfivdhfgshmf- Sgd sno o‘mdk ne Ehf­ 8 rgnvr
sgd vdhfgsdc bnqqdk‘snq ts/’s( enq sgd etkk Zα ‘r vdkk ‘r
rgnqs,chrs‘mbd ‘mc knmf,chrs‘mbd oqnidbshnmr ZQCα ‘mc ZHCα
enq s, ¡ /σ3 el ‘mc s0 ¡ 0σ4 el­ Sgd anssnl o‘mdk ne
Ehf­ 8 rgnvr sgd bnqqdronmchmf bnmsqhatshnmr sn Zα rdo,
‘q‘sdc ax dmdqfx rb‘kd

〉
q­ Vd mnshbd sg‘s+ ‘r dwodbsdc+

ZQCα g‘r qdctbdc bnmsqhatshnmr eqnl knv,dmdqfx rb‘kdr ‘mc
ZHCα g‘r qdctbdc bnmsqhatshnmr eqnl ghfg,dmdqfx rb‘kdr­
Hm sgd khlhs ne oqnidbshnm sn rtflbhdmskx knmf chrs‘mbdr+ vd
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EHF­ 8­ Vhmcnv ne Q,q‘shn c‘s‘ hm Dtbkhcd‘m onrhshnm ro‘bd
’sno( ‘mc sgd dΩdbs ne sgd vhmcnv hm sdqlr ne qd,vdhfgshmf
dmdqfx qdfhnmr ’anssnl(­

l‘x ‘ssdlos sn bnmsq‘rs sgd Q,q‘shn c‘s‘ chqdbskx vhsg
‘m dwbktrhud rstcx ne sgd knv,kxhmf µµ rs‘sdr hm sgd k‘sshbd
b‘kbtk‘shnm­ Sghr hr kdes sn etstqd vnqj­

RsSshrshbr ne khfgsfiptSqi bnmsqhatshnm- Vd trd ‘m
hloqnudc rs‘shrshb‘k drshl‘snq hmbktchmf ‘ etkk knv,lncd
‘udq‘fd enq sgd khfgs,pt‘qj bnmmdbsdc bnmsqhatshnm hm sgd
hrnrohm rxlldsqhb khlhs ‘r chrbtrrdc hm sgd l‘hm sdws­
Enq sghr drshl‘snq+ vd ffmc sg‘s vd ‘qd ‘akd sn r‘stq‘sd
sgd rs‘shrshb‘k fitbst‘shnmr sn sgd f‘tfd mnhrd enq 4/ onhms
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Fig. 47. (Left) Continuum limit of the intermediate window aWµ (ud) (� = 0.15 fm, t0 = 0.4 fm, t1 = 1 fm) for DW (circles) and HISQ (squares)
fermions. Lines denote fits linear in a2 for the a ! 0 limit (bursts). The R-ratio result (cross, Ref. [445]) is also shown. It corresponds to the
difference of the total R-ratio window result based on Ref. [3] and the sum of all but the isospin-symmetric light-quark lattice results of Ref. [11].
Finite-volume (DWF and HISQ) and taste-breaking (HISQ) corrections are included to NLO in ChPT. Lattice spacing uncertainties, added in quadrature
with statistical errors, are also included. Plot reproduced from Ref. [16]. (Right) Comparison of aWµ (ud) results after continuum and infinite-volume
extrapolation (blue circles). The RBC/UKQCD-18 result [11] is based on 2+1 flavors of DW fermions. All other lattice results are based on 2+1+1
flavors of HISQ fermions [16,396,446]. Both extrapolations for HISQ shown in the left panel are reproduced in the right panel as well for comparison.
The DW and R-ratio results are the same as shown in the left panel.

spacing (a ⇡ 0.12 fm), because Ref. [376] did not report continuum limit results for ⇧ud
n . As shown in the left panel of

Fig. 46, all lattice results [11,14,376,377,421] for ⇧ud
1 are nicely consistent, while there is a 2� tension between BMW-

16 [421] and FHM-19 [14] for ⇧ud
2 (right panel). Considering the [1, 1] Padé approximant for the HVP scalar function,

⇧̂ (Q 2), the light-quark connected anomaly is evaluated as

aHVP, LOµ (ud) =

⇣ ↵

⇡

⌘2
Z

1

0
dQ 2!(Q 2/m2

µ)
Q 2⇧ud

1

1 � Q 2
�
⇧ud

2 /⇧ud
1

� . (3.44)

The Padé approximants thus tell us that a larger ⇧ud
1 and smaller (�⇧ud

2 ) result in a larger aHVP, LOµ (ud) [421]. This may
explain why BMW-17 (with BMW-16) and RBC/UKQCD-18 obtain a somewhat larger aHVP, LOµ (ud) than ETM-18/19 and
FHM-19.

3.3.4. Intermediate window
The window method developed in Ref. [11] can be used to compare lattice results where they are most precise, for

example when 0.4 . x0 . 1.5 fm, which defines the intermediate window aWµ . By design, the upper end of the x0
range is chosen to remove contributions from the large Euclidean time region, which is sensitive to FV and two-pion
effects and suffers from severe StN problems. In addition, the cut on the lower end of the x0 range is expected to result
in reduced discretization errors. This quantity can therefore be calculated with much better (statistical and systematic)
precision than the total aHVP, LOµ , and hence is a powerful diagnostic tool for comparing different lattice methods. Given
the precision goals, careful studies of the remaining systematic effects, in particular discretization errors are certainly
needed. Finally, as proposed in Ref. [11] and discussed in Section 3.1.4, one can also evaluate aWµ using experimental R-
ratio data for a more detailed comparison between lattice and data-driven results. However, until very recently, only two
groups, RBC/UKQCD-18 [11] and Aubin et al.-19 [16], had used their lattice data to evaluate the intermediate window
aWµ in the continuum and infinite-volume limits (see the left panel of Fig. 47). The two panels in Fig. 47 show lattice
results for aWµ (ud), which is defined in isosymmetric QCD (without SIB and QED corrections) specifically for the light-
quark contributions. In order to compare the lattice results with an R-ratio derived evaluation, the ‘‘R-ratio/lattice’’ point
in Fig. 47 is constructed in Ref. [445] by first using the analysis in Ref. [3] to evaluate the R-ratio window and then
subtracting from it the contributions from the heavier flavors, the disconnected, and the IB terms using the lattice results
of Ref. [11]. The right panel of Fig. 47 shows, in addition to the published RBC/UKQCD-18 and Aubin et al.-19 results, two
new lattice results for aWµ , BMW-20 [396] and LM-20 [446] (open blue circles). Both appeared only very recently, and
have therefore not yet been reviewed in depth in this paper. The three staggered results, Aubin et al.-19, BMW-20, and
LM-20, lie above the RBC/UKQCD-18 and ‘‘R-ratio/lattice’’ values. The quoted uncertainties on the new BMW-20 and LM-20
lattice results and on Aubin et al.-19 for the three lattice spacing fit are significantly smaller than the ‘‘R-ratio/lattice’’ one,
with which only the RBC/UKQCD-18 value is clearly compatible. If one considers the spread of the two and three lattice
spacing fit results from Aubin et al.-19 as a systematic uncertainty for this calculation, the RBC/UKQCD-18 evaluation is
also compatible with the Aubin et al.-19, BMW-20, and LM-20 results at the 2� level. It will be important to see what
happens to the spread of the lattice results as more high-precision calculations of this quantity become available. Needless
to say, such calculations should include detailed analyses of the associated systematics, in particular, discretization effects.
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Meyer–Lellouch–Lüscher–Gounaris–Sakurai technique described in 
Supplementary Information; and (iii). the ρ–π–γ model of Jegerlehner 
and Szafron30, already used in a lattice context in ref. 31. Moreover, to 
reduce discretization errors in the light-quark contributions to aµ, 
before extrapolating those contributions to the continuum, we apply 
a taste-improvement procedure that reduces lattice artefacts due to 
taste-symmetry breaking. The procedure is built upon the three models 
of π–ρ physics mentioned above. We provide evidence that validates 
this procedure in Supplementary Information.

Combining all of these ingredients, we obtain as a final result 
aµ = 707.5(2.3)stat(5.0)syst(5.5)tot. The statistical error comes mainly 
from the noisy, large-distance region of the current–current correla-
tor. The systematic error is dominated by the continuum extrapola-
tion and the finite-size effect computation. The total error is obtained 
by adding the first two in quadrature. In total, we reach a relative 
accuracy of 0.8%. In Fig. 2 we show the continuum extrapolation of 
the light, connected component of aµ, which gives the dominant 
contribution to aµ.

Figure 3 compares our result with previous lattice computations and 
also with results from the R-ratio method, which have recently been 
reviewed in ref. 7. In principle, one can reduce the uncertainty of our 
result by combining our lattice correlator, G(t), with the one obtained 
from the R-ratio method, in regions of Euclidean time in which the lat-
ter is more precise19. We do not do so here because there is a tension 
between our result and those obtained by the R-ratio method, as can be 
seen in Fig. 3. For the total LO-HVP contribution to aµ, our result is 2.0σ, 
2.5σ, 2.4σ and 2.2σ larger than the R-ratio results of aµ = 694.0(4.0) (ref. 3),  
aµ = 692.78(2.42) (ref. 4), aµ = 692.3(3.3) (refs. 5,6) and the combined 
result aµ = 693.1(4.0) of ref. 7, respectively. It is worth noting that the 
R-ratio determinations are based on the same experimental datasets 
and are therefore strongly correlated, although these datasets were 
obtained in several different and independent experiments that we have 

no reason to believe are collectively biased. Clearly, these comparisons 
need further investigation, although it should also be kept in mind 
that the tensions observed here are smaller, for instance, than what 
is usually considered experimental evidence for a new phenomenon 
(3σ) and much smaller than what is needed to claim an experimental 
discovery (5σ).

As a first step in that direction, it is instructive to consider a mod-
ified observable, where the correlator G(t) is restricted to a finite 
interval by a smooth window function19. This observable, which we 
denote as aµ,win, is obtained much more readily than aµ on the lattice. 
Its shorter-distance nature makes it far less susceptible to statistical 
noise and to finite-volume effects. Moreover, in the case of staggered 
fermions, it has reduced discretization artefacts. This is shown in 
Fig. 4, where the light, connected component of aµ,win is plotted as 
a function of a2. Because the determination of this quantity does 
not require overcoming many of the challenges described above, 
other lattice groups have obtained it with errors comparable to 
ours19,20. This allows a sharper benchmarking of our calculation of 
this challenging, light-quark contribution that dominates aµ.  
Our aµ,win

light  differs by 0.2σ and 2.2σ from the lattice results of ref. 20 
and ref. 19, respectively. Moreover, aµ,win can be computed using the 
R-ratio approach, and we do so using the dataset provided by the 
authors of ref. 4. However, here we find a 3.7σ tension with our lattice 
result.

To conclude, when combined with the other standard-model con-
tributions (see, for example, refs. 3,4), our result for the leading-order 
hadronic contribution to the anomalous magnetic moment of the 
muon, a = 707.5(5.5) × 10µ

LO HVP
tot

−10� , weakens the long-standing dis-
crepancy between experiment and theory. However, as discussed above 
and can be seen in Fig. 2, our lattice result shows some tension with the 
R-ratio determinations of refs. 3–6. Obviously, our findings should be 
confirmed—or refuted—by other studies using different discretizations 
of QCD. Those investigations are underway.
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ightl . The data 
points are extrapolated to the infinite-volume limit. Central values are 
medians; error bars are s.e.m. Two different ways to perform the continuum 
extrapolations are shown: one without improvement, and another with 
corrections from a model involving the ρ meson (SRHO). In both cases the lines 
show linear, quadratic and cubic fits in a2 with varying number of lattice 
spacings in the fit. The continuum-extrapolated result is shown with the results 
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determination, obtained using the experimental data compiled by the authors 
of ref. 4 and our lattice results for the non-light-connected contributions. This 
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the lattice QCD results.
Two of the most recent results from phenomenologi-

cal determinations of the moments [64, 70] are also com-
pared in Fig. 27. The results from [70] include exper-
imental datasets for the inclusive cross-section that are
both older and newer than those used in [64]. Results
from [70]’s ‘standard’ selection of datasets were given in
Table XIII and are shown in Fig. 27 in red. We also
show, in orange, the results from the ‘maximal’ set (all
experimental information available at that point) and the
‘minimal’ set (datasets that are needed to cover the full�

s range from 2 GeV to 10.5 GeV without gaps, keeping
the most accurate results). Note that the resonance pa-
rameters are the same for all selections. We see that the
variation with dataset selection covers almost 1� for the
4th moment, but much less for the 6th moment. This is
also reflected in the di�erences between [70] and [64].

These phenomenological analyses must subtract the
‘non-charm’ background from experimental results for
R(e+e� � hadrons) to leave Rc for Eq. (35). Rc is
defined to be the result from diagrams with a charm
quark loop connected to a photon at both ends [64]
i.e. the quark-line connected vector current-current cor-
relator that we study on the lattice. The subtracted
background includes QED e�ects for the non-charm and
singlet (quark-line disconnected) contributions. The re-
mainder, Rc then includes the QED e�ects associated
with the cc loop. The dominant source of uncertainty
in Rc comes from the charmonium resonance (J/� and
��) region and is set by the uncertainty in �ee for these
states. The fractional uncertainty is approximately the
same for all moments [64, 70]. When the (n�2)th root is
taken the fractional uncertainty then falls with increasing
n.

Good agreement is seen between the phenomenological
results and our new lattice results for n = 6, 8 and 10, al-
though the lattice results are systematically at the upper
end of the phenomenological range. The largest discrep-
ancy is a 2.8� tension for the 4th moment between us and
the results of [70] for their minimal selection of datasets.
The tension is 2.4� for the standard selection, and below
2� for the maximal selection and for the results of [64].
The � here is that for the phenomenological results since
the lattice uncertainty is much smaller. Because the 4th
moment dominates the determination of ac

µ, this tension
between lattice QCD+QED and some of the phenomeno-
logical results carries over to ac

µ, to be discussed in the
next section.

The time-moments can also be used to determine a
value for mc by comparing to O(�3

s) continuum QCD
perturbation theory and this was the focus of [64, 70].
We do not do this here because the scale of �s is rather
low in these determinations meaning that uncertainties
from missing higher-order corrections can be substantial.
We prefer instead the method of [27], which enables a
higher scale to be used in the perturbation theory. We
have checked, however that the mc value that would
be obtained from the time-moments is consistent with

TABLE XV. Values of ac
µ on the ensembles of Table I and

the direct quenched QED correction on a subset of those en-
sembles. Those marked with a � and † are at deliberately
mistuned c masses (see caption to Table III). The uncertain-
ties quoted are correlated through the value of MJ/� (for all
ensembles, see text) and ZV (for ensembles at a given �).

Set ac
µ � 109 R0

QED

�
ac

µ

�

1 1.23183(78) -
2 1.24522(75) 1.000478(80)
3 1.25431(77) -
3A 1.25518(49) -
3B 1.25485(48) -
4 1.40782(91) -
6 1.41738(91) 1.001080(89)
6� 1.42370(91) -
8 1.42234(91) -
9 1.47866(97) -
10 1.48514(75) 1.001416(83)
11 1.48853(75) -
12 1.4725(13) 1.00141(15)
13 1.4805(13) -
14 1.4610(33) -
14† 1.4702(33) -
15 1.4572(10) -

FIG. 28. Extrapolation to the continuum physical point of the
connected charm HVP contribution to the anomalous mag-
netic moment of the muon. Di�erent symbols denote results
on groups of ensembles with similar lattice spacing. Results at
deliberately mistuned c quark masses are not plotted but are
included in the fit. The red points correspond to pure QCD,
the light blue points to QCD+QED and the dashed green fit
curve plotted is that for QCD+QED. The continuum result
(red cross) is compared to the result (open black square) ob-
tained by calculating ac

µ from the individually extrapolated
time-moments in Section VI A.

both [27] and the value given in Section IV.

C. ac
µ: Pure QCD and QCD+QED results

To calculate the quark-line connected HVP contribu-
tion to aµ from c quarks, ac

µ, we can either use the physi-

BMW 20 light quark window
HPQCD 20 charm quark full aµ
arXiv:2005.01845

May of course be very di↵erent for light-quark contribution and

charm-quark!

3.7� tension between BMW20 and R-ratio for Window!

Red line for comparison with next slides Slide credit: Christoph Lehner

Towards precise comparisons: the window method [RBC/UKQCD-18]
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Towards precise comparisons: the window method [RBC/UKQCD-18]

Aubin et al.

aµ +𝒃 𝒂𝟐

aµ + 𝒃 𝒂𝟐
𝟏

𝒄 − log 𝑎"

• Is lattice continuum limit incompatible with R-ratio result?

• Or do we need even finer lattices?

• Fits to ud connected, 0.4 – 1.0 fm window:

preliminary



Strange and charm contributions
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Fig. 45. Comparisons of lattice results for flavor-specific contributions to aHVP, LO
µ (↵2). (Upper-Left) Light-quark connected contribution aHVP, LO

µ (ud).
(Upper-Right) Strange-quark connected contribution aHVP, LO

µ (s). (Lower-Left) Charm-quark connected contribution aHVP, LO
µ (s). (Lower-Right) Quark-

disconnected contribution aHVP, LO
µ,disc . The lattice results in each panel are grouped by the number of sea quarks in the gauge ensembles employed in

the underlying calculations, where ‘‘Nf = 2+1+1’’ (circles) labels ensembles with up, down, strange, and charm quarks in the sea, for ‘‘Nf = 2+1’’
(squares) charm quarks are not included in the sea, while for ‘‘Nf = 2’’, (up triangles) strange quarks are also omitted in the sea. Filled symbols
indicate results included in the lattice averages of Section 3.5.1, which are shown here as light blue bands. Open symbols indicate results that have
been updated or superseded, see Table 9 for further details.
Source: Adapted from Ref. [443].

for aHVP, LOµ (s) is in 1� tension with the other lattice results while for aHVP, LOµ (c) it is in almost 2� tension with the
rest. The strange- and charm-quark connected contributions, while insensitive to FVEs and StN problems from large
Euclidean times, suffer from larger discretization effects. This is especially true for aHVP, LOµ (c), and we note that the PACS-19
calculation has O(a) artifacts, which are not present in the other lattice results.

As explained in Section 3.2.4, the calculation of the quark-disconnected contribution aHVP, LOµ,disc is an especially challenging
part of the lattice-QCD calculation of aHVP, LOµ . In fact, as shown in Fig. 45 (lower-right panel) the results for aHVP, LOµ,disc exhibit
the second-largest tension among the individual contributions to aHVP, LOµ . While the BMW-17 [10] and RBCC/UKQCD-
18 [11] results are nicely consistent with each other, they disagree with the Mainz/CLS-19 [15] result. Unlike BMW-17
and RBCC/UKQCD-18, the lattice calculation in Mainz/CLS-19 employs ensembles at unphysically large pion masses and
therefore requires a chiral extrapolation to the physical point. One of the fit ansätze employed in the chiral extrapolation
takes the 1/M2

⇡ singularity into account, which leads to a significantly lower value for aHVP, LOµ,disc at the physical point.
Finally, the challenging nonperturbative calculation of the subleading IB contributions �aHVP, LOµ has been performed

by only a few collaborations so far, as can be seen in Table 10 where we have collected the current lattice evaluations
(see Section 3.2.5 for a detailed discussion of calculations). Of the five results listed in Table 10 only FHM-17 [9],
RBC/UKQCD-18 [11,403], and ETM-19 [12] are based on actual lattice calculations that are precise enough to quote results.
While none of the three collaborations provide a complete lattice computation of all the contributions to �aHVP, LOµ , the
omitted contributions are estimated phenomenologically in all cases. In Ref. [9] (FHM-17) a result for the connected
SIB correction is presented, while Refs. [11,12,403] (RBC/UKQCD-18 and ETM-19) present a calculation of the connected
SIB and QED corrections. No disconnected contributions are included in the lattice calculations of Refs. [9,12], while
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Fig. 45. Comparisons of lattice results for flavor-specific contributions to aHVP, LO
µ (↵2). (Upper-Left) Light-quark connected contribution aHVP, LO

µ (ud).
(Upper-Right) Strange-quark connected contribution aHVP, LO

µ (s). (Lower-Left) Charm-quark connected contribution aHVP, LO
µ (s). (Lower-Right) Quark-

disconnected contribution aHVP, LO
µ,disc . The lattice results in each panel are grouped by the number of sea quarks in the gauge ensembles employed in

the underlying calculations, where ‘‘Nf = 2+1+1’’ (circles) labels ensembles with up, down, strange, and charm quarks in the sea, for ‘‘Nf = 2+1’’
(squares) charm quarks are not included in the sea, while for ‘‘Nf = 2’’, (up triangles) strange quarks are also omitted in the sea. Filled symbols
indicate results included in the lattice averages of Section 3.5.1, which are shown here as light blue bands. Open symbols indicate results that have
been updated or superseded, see Table 9 for further details.
Source: Adapted from Ref. [443].

for aHVP, LOµ (s) is in 1� tension with the other lattice results while for aHVP, LOµ (c) it is in almost 2� tension with the
rest. The strange- and charm-quark connected contributions, while insensitive to FVEs and StN problems from large
Euclidean times, suffer from larger discretization effects. This is especially true for aHVP, LOµ (c), and we note that the PACS-19
calculation has O(a) artifacts, which are not present in the other lattice results.

As explained in Section 3.2.4, the calculation of the quark-disconnected contribution aHVP, LOµ,disc is an especially challenging
part of the lattice-QCD calculation of aHVP, LOµ . In fact, as shown in Fig. 45 (lower-right panel) the results for aHVP, LOµ,disc exhibit
the second-largest tension among the individual contributions to aHVP, LOµ . While the BMW-17 [10] and RBCC/UKQCD-
18 [11] results are nicely consistent with each other, they disagree with the Mainz/CLS-19 [15] result. Unlike BMW-17
and RBCC/UKQCD-18, the lattice calculation in Mainz/CLS-19 employs ensembles at unphysically large pion masses and
therefore requires a chiral extrapolation to the physical point. One of the fit ansätze employed in the chiral extrapolation
takes the 1/M2

⇡ singularity into account, which leads to a significantly lower value for aHVP, LOµ,disc at the physical point.
Finally, the challenging nonperturbative calculation of the subleading IB contributions �aHVP, LOµ has been performed

by only a few collaborations so far, as can be seen in Table 10 where we have collected the current lattice evaluations
(see Section 3.2.5 for a detailed discussion of calculations). Of the five results listed in Table 10 only FHM-17 [9],
RBC/UKQCD-18 [11,403], and ETM-19 [12] are based on actual lattice calculations that are precise enough to quote results.
While none of the three collaborations provide a complete lattice computation of all the contributions to �aHVP, LOµ , the
omitted contributions are estimated phenomenologically in all cases. In Ref. [9] (FHM-17) a result for the connected
SIB correction is presented, while Refs. [11,12,403] (RBC/UKQCD-18 and ETM-19) present a calculation of the connected
SIB and QED corrections. No disconnected contributions are included in the lattice calculations of Refs. [9,12], while
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Seem to be in good shape

BMW-20    14.6(0)(1)
BMW-20   53.393(89)(68)
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Lattice HVP: disconnected corrections 

Hartmut	Wittig

Quark-disconnected	contribu6ons

6

Convergence	towards	precise	&	consistent	results

• Long-distance	regime	and	approach	to	the 
asympto6c	value

-30 -27.5 -25 -22.5 -20 -17.5 -15 -12.5 -10 -7.5 -5 -2.5 0

(ahvpµ )disc · 1010

FHM 20

Mainz/CLS 20

BMW 20

Mainz/CLS 19

RBC/UKQCD 18

BMW 17

(preliminary)

(preliminary)

Diagnostic quantity: the window [0.4, 1.0] fm

I Very good agreement between three collaborations.

Remaining	issues

Sufficiently	precise	for	the	6me	being

• Computa6onal	efficiency: 
stochas6c	techniques	vs.	eigenmodes
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vanishes within errors for larger values of x0. At small times the disconnected contribution

is only about 0.005% of the connected one, and hence we conclude that the vector correlator

G(x0) is completely dominated by the connected part in the region x0 ! 0.5 fm.

The fact that the disconnected contribution is small where it can be resolved does

not, however, imply that it is negligible. Using our data we can derive an upper bound

on the error which arises if one were to neglect the disconnected contribution altogether.

To this end it is useful to recall the isospin decomposition of the electromagnetic current

shown in eq. (2.13), which gives rise to the iso-vector (I = 1) correlator Gρρ and its

iso-scalar counterpart GI=0 (see eq. (2.15)). The iso-vector correlator Gρρ(x0) contains

only quark-connected diagrams; it is related to the connected light quark contribution

Gud(x0) via

Gρρ(x0) =
9

10
Gud(x0). (D.7)

By contrast, the iso-scalar correlator GI=0 contains both connected and disconnected con-

tributions, i.e.

G(x0)
I=0 =

1

10
Gud(x0) +Gs(x0)−Gdisc(x0). (D.8)

With the help of eqs. (D.3) and (D.7) one derives the expression

− Gdisc(x0)

Gρρ(x0)
=

G(x0)−Gρρ(x0)

Gρρ(x0)
− 1

9

(
1 + 9

Gs(x0)

Gρρ(x0)

)
. (D.9)

It is now important to realize that the iso-scalar spectral function vanishes below the

three-pion threshold, which implies that GI=0(x0) = O(e−3mπx0) for x0 → ∞. According

to eq. (D.8) this implies

Gdisc(x0) =

(
1

10
Gud(x0) +Gs(x0)

)
· (1 + O(e−mπx0)), (D.10)

G(x0) = Gρρ(x0) · (1 + O(e−mπx0)) (D.11)

in the deep infrared. With these considerations one determines the asymptotic behaviour

of the ratio in eq. (D.9) in the long-distance regime as

− Gdisc(x0)

Gρρ(x0)
x0→∞−→ −1

9
, (D.12)

where we have also taken into account that Gs(x0) drops off faster than Gρρ(x0) due to

the heavier mass of the strange quark. We expect the asymptotic value to be approached

from above, because [G(x0)−Gρρ(x0)] ∼ 1
18e

−mωx0 is likely larger than Gs(x0) ∼ 1
9e

−mφx0

for x0 " 1 fm.

In figure 7 we plot the ratio of eq. (D.9) versus the Euclidean distance. One can see

that the ratio is practically zero up to x0/a ≈ 26 on E5 and x0/a ≈ 22 at the smaller

pion mass of ensemble F6. Thus, there is no visible trend for distances x0 ! 1.7 fm that

the ratio approaches its asymptotic value of −1/9. In order to derive a conservative upper

bound on the quark-disconnected contribution we assume that the ratio of eq. (D.9) drops
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Introduction
•The exciting recent results from the Fermilab Muon g-2 experiment for the Muon Anoma-

lous Magnetic Moment (2104.03281) motivates reducing the error on lattice calculations

of the hadronic contribution to aLO
µ .

• In 1902.04223 we presented results for the connected light quark contribution aLO
µ with

an error of 1.4%.

To reduce the error we need to explicitly calculate:

•Disconnected contributions

•QCD+QED corrections

See Shaun Lahert’s talk at this conference for a report on our work on reducing the error

on the light quark connected contribution.

Disconnected contributions a
HV P (LO)DISC
µ

The leading-order contribution to the anomalous magnetic moment from the HVP is

aHVPµ = 4↵2

Z 1

0

dq2f (q2)⇧̂(q2).

The disconnected piece requires the non-perturbative calculation of the quark-line discon-

nected correlation of vector currents

The non-perturbative calculation requires the correlation of vector currents

d(t) =
1

3V

X

j=0,1,2

X

t0

Vj(t + t0)Vj(t
0
)

where Vj(t) is vector loop with component i at time t and V is the space-time volume.

Vj =
1

3
(Vu/d

j � Vs
j )

We use stochastic random sources to compute the required loops with a variety of variance

reduction techniques. In particular, an additional trick from the European Twisted Mass

collaboration (0803.0224) is used to reduce the errors. For some ensembles we also use low

eigenmodes with a stochastic correction.

Preliminary results for a
HV P (LO),DISC
µ

We have computed aHV P (LO),DISC
µ for the light and strange quarks.

Ensemble a fm m⇡ MeV L fm Eigenmodes Nmeas

Very coarse 0.15 134.7 4.8 300 1692

Coarse 0.12 134.9 5.8 - 787

Fine 0.09 128.3 5.8 1000 271

The correlators are multiplied by a random blinding factor.

The graph also shows the data corrected for finite volume and taste corrections.

The continuum and chiral extrapolation fit model is

D = a0

 
1 + a1a

2
+ a2(

m2

⇡ � m2

⇡,phys

m2

⇡,phys

)

!

where a is the lattice spacing units GeV
�1

with priors: a0 = 14(8), a1 = 0(1) and a2 =
0(3).

Preliminary window analysis of a
HV P (LO),DISC
µ

To compare di↵erent calculations a weight function is multiplied into the correlator.

⇥(t; t0,�) ⌘ 1

2
+
1

2
tanh[

t � t0

�
]

where � = 0.15 fm

W (t; t1, t2) ⌘ ⇥(t; t1,�) � ⇥(t; t2,�)

The weight function (t1 = 0.4 fm t2 = 1.0 fm) is applied to the blinded correlators.

•No taste corrections have been applied in the above graph.

•RBC and UKQCD (1801.07224), and BMWc (2002.12347) also found a large suppression

of aHV P (LO),DISC
µ for this window.

Connected quenched QED corrections

•We use the electro-quenched approximation.

•The calculation used quenched QED fields fixed to the Feynman gauge with zero modes

dealt with using the QEDL prescription.

•We use the truncated solver method with 16 sloppy inversions and 1 precise inversion.

Ensemble a fm m⇡ MeV L fm Nmeas Quark masses

Very coarse 0.15 134.7 4.8 356 ml, 3ml, 5ml, 7ml, ms,

Coarse (I) 0.12 132.7 5.8 208 3ml, 5ml, 7ml, ms

We plot the QED contribution to the strange as
µ.

�as
µ = as

µ[QCD + qQED] � as
µ[QCD]

We have not yet retuned the quark masses to include the QED contribution.

Conclusions
Future work

•We are about to start to generate correlators for the connected QCD+quenchedQED

correlators at the lattice spacing 0.09 fm.

•We are generating an ensemble of configurations with QCD + dynamical QED at the

lattice spacing of 0.15 fm.

We finally plan to compute the QED contribution in the disconnected diagrams.
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Needs further study, improvement 
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Lattice HVP: Isospin corrections 

V. Gülpers @ Lattice HVP workshop
Introduction

Overview of published results - contributions to aµ ◊ 1010

BMW ≠1.27(40)(33)
RBC/UKQCD 5.9(5.7)(1.7)
ETM 1.1(1.0)

BMW≠0.0095(86)(99) 0.42(20)(19)

BMW≠0.55(15)(11)
RBC/UKQCD≠6.9(2.1)(2.0)

BMW≠0.047(33)(23)0.011(24)(14)

BMW6.59(63)(53)
RBC/UKQCD10.6(4.3)(6.8)

ETM6.0(2.3)
FHM7.7(3.7) 9.0(2.3)

LM9.0(0.8)(1.2)

BMW≠4.63(54)(69)

BMW [arXiv:2002.12347]

RBC/UKQCD [Phys.Rev.Lett. 121 (2018) 2, 022003]

ETM [Phys. Rev. D 99, 114502 (2019)]

FHM [Phys.Rev.Lett. 120 (2018) 15, 152001]

LM [Phys.Rev.D 101 (2020) 074515]

Vera Gülpers (University of Edinburgh) HVP from LQCD - workshop 18 Nov 2020 5 / 6

• Some tensions between lattice results for 
individual contributions. 
  

• Large cancellations between individual 
contributions: 

 

• Ongoing efforts presented by Mainz and 
Fermilab-HPQCD-MILC. 

δaIB
μ ≲ 1 %



HVP: to reach desired precision (2-5 per-mil)

16

• Strange, charm, (bottom) contributions in good shape 
(will not resolve issues)

• FV corrections  (𝐿 > 6 fm) reliable (NNLO 𝜒PT, LLGS, HP)
Important to have a big box (BMW, PACS use L = 10 fm)

• Statistical precision top priority for DW, TM, Wilson (in progress) 
Improved bounding method, low-lying states for long distance tail

• Physical masses 
(most groups already)

• More, more precise disconnected and IB calculations needed

• Continuum limit and scale setting (per-mil) are crucial



• RBC/UKQCD

• 3rd lattice spacing, a-1=2.7 GeV, 6 fm box

• Window continuum limit w/3 lattice spacings by Fall

• 2+1   2+1+1 correction (expected to be small)

• Full result w/3 lattice spacings by end of year

• Error on total below 1%

• Aubin et al.

• NNLO FV and taste breaking (discretization) corrections

• Improved window and full connected results by end of year

17

HVP updates soon



aµ-HLbL from data and models
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S- :nxZlZ+ M- :rltrrdm+ L- AdmZxntm ds Zk- Ogxrhbr Qdonqsr 776 �1/1/( 0ż055

Ehf- 5.- Bnlo_qhrnm ne sgd ν/ SEE eqnl chrodqrhnm sgdnqx Z10+386[ &qdc(+ B@ Z08[ &aktd(+ _mc k_sshbd PBC Z11[ &xdkknv(- Vd rgnv ansg sgd rhmfkx,
&kdes( _mc sgd cntakx,uhqst_k &qhfgs( enql e_bsnqr-

sgd enql e_bsnq mnql_khy_shnm enq sgd dwodqhldms_k OqhlDw qdrtks Z417[928

Zν
/,onkd

λ &chro( + 52)/!1)6
�1)0 · 0/�00 .

Zν
/,onkd

λ &B@( + 52)5&1)6(· 0/�00 .

Zν
/,onkd

λ &k_sshbd( + 51)2&1)2(· 0/�00 ) &3-26(

Lnqdnudq+ _kk sgqdd tmcdqkxhmf ν/ SEEr _qd bnmrhrsdms vhsg d_bg nsgdq+ _r b_m ad nardqudc eqnl Ehf- 5/- Bnlahmhmf sgd
chrodqrhud du_kt_shnm ne sgd ν/ vhsg sgd B@ enq ζ _mc ζ∝+ vghbg _qd hm fnnc _fqddldms vhsg CxrnmżRbgvhmfdq dpt_shnmr
cdsdqlhm_shnmr+ vd _qqhud _s sgd enkknvhmf btqqdms drshl_sd enq sgd ordtcnrb_k_q,onkd bnmsqhatshnmr9

Zν
/!ζ!ζ∝,onkd

λ + 82)7!3)/
�2)5 · 0/�00 . &3-27(

vgdqd hmchuhct_k rxrsdl_shb tmbdqs_hmshdr ne B@ g_ud addm bnlahmdc khmd_qkx- Rhlhk_qkx+ bnlahmhmf sgd qdrtks nas_hmdc
eqnl B@ enq sgd ν/+ ζ+ _mc ζ∝ bnmsqhatshnmr+ vd nas_hm

Zν
/!ζ!ζ∝,onkd

λ + 83)2&4)2(· 0/�00 . &3-28(

vhsg cheedqdmbdr hm tmbdqs_hmshdr l_hmkx ctd sn sgd cheedqdms sqd_sldms hm rxrsdl_shb dqqnqr-

3-4- Bnmsqhatshnm ne svn,ohnm hmsdqldchZsd rsZsdr

@r chrbtrrdc hm Rdbshnm 3-1-2+ L_mcdkrs_l‘r cntakd,chrodqrhnm qdk_shnm Z556[ b_m ad trdc sn cdehmd sgd bnmsqhatshnmr
ne cheedqdms g_cqnmhb hmsdqldch_sd rs_sdr sn sgd GKaK sdmrnq _mc Zλ Z366[ hm _ lncdk,hmcdodmcdms v_x- Hm sgd tmhs_qhsx
qdk_shnm+ sgd khfgsdrs hmsdqldch_sd rs_sd hr _ rhmfkd mdtsq_k ohnm+ fhuhmf qhrd sn sgd ohnm,onkd bnmsqhatshnm Zν/,onkd

λ chrbtrrdc
hm Rdbshnm 3-3- Sgd mdws khfgsdrs hmsdqldch_sd rs_sd hr fhudm ax svn ohnmr+ dhsgdq ν/ν/ nq ν!ν�- Sgd tmhs_qhsx qdk_shnm enq
sgd GKaK sdmrnq dwoqdrrdr sgd chrbnmshmthsx ctd sn svn,ohnm hmsdqldch_sd rs_sdr hm sdqlr ne sgd rta,oqnbdrr β ×β × $ νν -
He nmd _ookhdr tmhs_qhsx _ rdbnmc shld _mc bnmrhcdqr hmsdqldch_sd rs_sdr hm sgd bqnrrdc rta,oqnbdrr β ×ν $ β ×ν + nmd b_m
rokhs sgd etkk svn,ohnm bnmsqhatshnm sn GKaK hmsn _ rtl ne cheedqdms anw snonknfhdr+ _r hkktrsq_sdc hm Ehf- 41- Hm sgd enkknvhmf+
vd chrbtrr sgd cheedqdms svn,ohnm bnmsqhatshnmr _mc sgdhq mtldqhb_k du_kt_shnm a_rdc nm chrodqrhnm sgdnqx-

3-4-0- Ohnm anw
Hm sgd tmhs_qhsx qdk_shnm enq β ×ν! $ β ×ν!+ sgd khfgsdrs hmsdqldch_sd rs_sd hr sgd bg_qfdc ohnm- Sgd rs_qshmf,onhms

sn cdehmd sghr bnmsqhatshnm hr _ ehwdc,r chrodqrhnm qdk_shnm enq β ×β × $ ν!ν�- Hm Qde- Z366[+ hs v_r rgnvm sg_s sgd otqd
onkd bnmsqhatshnm hm sghr chrodqrhnm qdk_shnm dw_bskx bnhmbhcdr vhsg sgd Anqm sdql hm _ rb_k_q PDC &rPDC( b_kbtk_shnm ne
β ×β × $ ν!ν�+ ltkshokhdc ax _ ohnm udbsnq enql e_bsnq &UEE( enq d_bg ne sgd svn nee,rgdkk ognsnmr _r hkktrsq_sdc hm
Ehf- 50- Sgd rd_ftkk sdql hr qdpthqdc hm _ rPDC Edxml_m,ch_fq_l b_kbtk_shnm sn nas_hm _ f_tfd,hmu_qh_ms dwoqdrrhnm- Hm
sgd chrodqrhud _ooqn_bg+ nmd ehqrs cdehmdr _ ASS sdmrnq cdbnlonrhshnm enq β ×β × $ νν Z38/+380[+ vghbg etkkx s_jdr b_qd
ne f_tfd hmu_qh_mbd+ hm _m_knfx sn sgd b_rd ne sgd GKaK sdmrnq hsrdke _r cdrbqhadc hm Rdbshnm 3-1-1- Hm sghr qdoqdrdms_shnm+
f_tfd hmu_qh_mbd hr l_mhedrs _mc sgdqd _qd svn ohnm,onkd tmhs_qhsx ch_fq_lr oqdrdms- Mnsd sg_s btsshmf sgd oqno_f_snq

28 Mnsd sg_s sgdrd cdsdqlhm_shnmr trd rkhfgskx cheedqdms hmots enq sgd SEE mnql_khy_shnm+ d-f-+ vhsg sgd B@ qdrtks toc_sdc sn OqhlDw,HH sgd roqd_c
_lnmf sgd bdmsq_k u_ktdr vntkc adbnld rkhfgskx k_qfdq–rdd oqduhntr bnlldmsr-
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Ehf- 46- Sgd ordtcnrb_k_q,onkd bnmsqhatshnm9 sgd c_rgdc khmdr rs_mc enq sgd ordtcnrb_k_q ldrnm+ vghkd sgd aknar b_m ad tm_lahftntrkx qdk_sdc sn
sgd SEEr-
Rntqbd9 Qdoqhmsdc eqnl Qde- Z08[-

3-2-3- QZchZshud bnqqdbshnmr Zmc Lnmsd BZqkn dudms fdmdqZsnqr
Vhsg sgd dqqnq nm &f � 1(λ bnlhmf eqnl sgd GUO _mc sgd GKaK bnmsqhatshnmr _klnrs _s sgd r_ld kdudk Z1+2+5+6[+

sgd qdkdu_mbd ne sgd dqqnq qdctbshnm hm sgd GKaK hr _r hlonqs_ms _r sgd dqqnq qdctbshnm hm GUO- @r _ bnmrdptdmbd+ _kk
onrrhakd rntqbdr ne sgd dqqnq g_ud sn ad rbqtshmhydc nmbd lnqd- Sgd lnrs hlonqs_ms hmenql_shnm nm sgdrd bnmsqhatshnmr
bnldr eqnl dwodqhldms_k c_s_ nm β &×(β &×( " g_cqnmr _lokhstcdr+ vgdqd nmd ne sgd rntqbdr ne sgd rxrsdl_shb dqqnq hr
sgd _bbtq_bx ne sgd Lnmsd B_qkn dudms fdmdq_snqr- Sgd lnrs hlonqs_ms nmd enq sgd du_kt_shnm ne sgd &f � 1(λ _qd sgd
β &×(β &×( " ordtcnrb_k_q&r( _lokhstcdr- Hm sgd ro_bdkhjd qdfhnm sgdx vdqd qdonqsdc hm Qder- Z8/+80+85+86+88[- @ rsqnmf
sdmrhnm v_r entmc adsvddm sgd A@A@Q c_s_ Z85[ _mc nsgdq ld_rtqdldmsr Z8/+80+88[ ne sgd ohnm SEE-

Enq sgd qdbdms dwodqhldms_k ld_rtqdldmsr svn dudms fdmdq_snqr vdqd trdc9 SQDORORS Z88+480[ hm sgd ADKKD _m_kxrhr
_mc FFQDRQB Z481[ hm sgd A@A@Q _m_kxrhr- Ansg ne sgdl hmbktcd q_ch_shud bnqqdbshnmr ax ld_mr ne _ rsqtbstqd etmbshnm
ldsgnc- Qdbdmskx sgd dudms fdmdq_snq DJG@Q@ Z482+483[ v_r tofq_cdc Z484[ _mc sgd PDC bnqqdbshnmr vdqd hmbktcdc
dw_bskx hmsn sgd bncd- Sgd DJG@Q@ bncd oqdchbsr ltbg ahffdq+ to sn 1/"+ q_ch_shud bnqqdbshnmr enq sgd rhmfkd s_f dudms
rdkdbshnm ne A@A@Q dwodqhldms _r bnlo_qdc sn sgd FFQDRQB dudms fdmdq_snq oqdchbshnm+ vghbg hr ne nqcdq ne 0"-
He sgd oqdchbshnmr ax sgd DJG@Q@ fdmdq_snq _qd bnqqdbs+ qd_m_kxrdr ne sgd dwodqhldms_k c_s_ _qd mdbdrr_qx- Hs hr mns
rsq_hfgsenqv_qc sn fds hmenql_shnm nm gnv sghr k_qfd bg_mfd hm sgd q_ch_shud bnqqdbshnmr hmektdmbdr sgd ld_rtqdldmsr+ _r
hs _eedbsr mns nmkx sgd q_ch_shud bnqqdbshnm e_bsnq+ ats _krn sgd dwodqhldms_k deehbhdmbhdr: _mc sn nas_hm sgd dwodqhldms_k
deehbhdmbhdr sgd cdsdbsnq rhltk_shnmr _qd mdbdrr_qx- Hfmnqhmf sgd deedbs nm sgd deehbhdmbhdr _mc s_jhmf hmsn _bbntms nmkx
sgd q_ch_shud bnqqdbshnm e_bsnq+ sgd ohnm SEE dwsq_bsdc eqnl sgd A@A@Q c_s_ hr _ants 1/" ghfgdq- Gnvdudq+ _r b_m ad rddm
eqnl Dp- &3-08( _mc Ehf- 47+ sgd vdhfgshmf e_bsnqr v0.1 c_lodm sgd hmektdmbd ne sgd A@A@Q c_s_ sn Zν/,onkd

λ + _r sgdx _qd
nmkx _u_hk_akd _s P 1 / 3FdU1- Mdudqsgdkdrr+ sgdrd bnmrhcdq_shnmr rsqnmfkx rtffdrs sg_s qd_m_kxrdr ne sgd dwodqhldms_k
c_s_ _mc _ bnmehql_shnm ne sgd qdrtksr ne Qde- Z484[ _qd mdbdrr_qx+ _r sgd q_ch_shud bnqqdbshnmr lhfgs _eedbs sgd ld_rtqdc
enql e_bsnqr _s _ rb_kd qdkdu_ms enq sgd &f � 1(λ oqdchbshnmr-

3-3- Bnmsqhatshnm ne sgd ohnm onkd Zmc nsgdq ordtcnrbZkZq onkdr

Sgd ordtcnrb_k_q,onkd bnmsqhatshnmr &rdd Ehf- 46( qdpthqd sgd nm,rgdkk ordtcnrb_k_q SEEr hm sgd ro_bdkhjd qdfhnm _r sgd
nmkx hmots _mc qdoqdrdms sgd k_qfdrs hmchuhct_k bnmsqhatshnmr sn GKaK9 sxohb_kkx+ ZO,onkd

λ ≥ 0//· 0/�00+ vghbg hr rhlhk_q hm
rhyd sn sgd vgnkd GKaK- @r _ bnmrdptdmbd+ _mc _bbntmshmf enq sgd dwodbsdc dwodqhldms_k tmbdqs_hmsx &04· 0/�00(+ sgdrd
rgntkc ad tmcdqrsnnc adknv sgd 0/" kdudk- Rshkk+ fhudm sgd qdkdu_ms rb_kdr+ sgd ν/ qdoqdrdmsr sgd l_inq bnmsqhatshnm+ xds
sgd btqqdmskx rntfgs oqdbhrhnm qdpthqdr _krn _ b_qdetk du_kt_shnm ne sgd ζ _mc ζ∝-

Fhudm sgdhq oqnlhmdms qnkd+ sgdrd bnmsqhatshnmr g_ud addm vhcdkx dwoknqdc hm sgd o_rs+ rs_qshmf eqnl sgd ohnmddqhmf
vnqj hm Qder- Z377+388ż4/2[ a_rdc nm g_cqnmhb deedbshud K_fq_mfh_mr _s _ shld vgdm dwodqhldms_k c_s_ vdqd rb_qbd+
hlokxhmf onsdmsh_kkx k_qfd tmbdqs_hmshdr- @r _ qdrtks+ hs v_r mdbdrr_qx sn trd lnqd ogdmnldmnknfhb_k cdrbqhoshnmr enq
sgd ordtcnrb_k_q SEEr+ a_rdc nm udbsnq,ldrnm,cnlhm_mbd &ULC( hcd_r _mc fthcdc ax sgd edv dwhrshmf dwodqhldms_k
c_s_ Z377+4/0[- K_sdq+ athkchmf nm k_qfd,Mb hcd_r _mc mdv c_s_+ sgd hmbktrhnm ne _cchshnm_k qdrnm_mbdr _kknvdc sgd _tsgnqr
sn r_shrex &bdqs_hm( jmnvm knv, _mc ghfg,dmdqfx PBC bnmrsq_hmsr _mc sn adssdq ehs _mc hmsdqonk_sd sgd c_s_ Z362[- Vd cn
mns chrbtrr sgd mnmonkd &——ν/,dwbg_mfd‘‘( bnmsqhatshnmr nq dudm u_qh_msr hm vghbg nmd udqsdw bnms_hmr _ bnmrs_ms enql
e_bsnq Z07+365+485[ enq sgd qd_rnmr ntskhmdc hm Rdbshnm 3-1-2-

Vhsg sgd _cudms ne sgd mdv fdmdq_shnm ne &f � 1(λ dwodqhldmsr+ rxrsdl_shb tmbdqs_hmshdr ne rtbg _ooqn_bgdr &qdk_sdc
sn sgd ehmhsd mtladq ne qdrnm_mbdr _mc sgd k_qfd,Mb khlhs(+ oqduhntrkx hqqdkdu_ms+ ltrs ad hloqnudc tonm e_q adxnmc sgd
sxohb_k 2/" drshl_sdr- Bnmrdptdmskx+ sgd ogdmnldmnknfhb_k cdsdqlhm_shnmr ltrs ad lncdk,hmcdodmcdms _mc c_s_,cqhudm
sn _r k_qfd _m dwsdms _r onrrhakd+ l_jhmf trd ne _kk dwodqhldms_k c_s_ nm sgd bnqqdronmchmf SEEr hm nqcdq sn _bghdud _
mdv rs_mc_qc ne oqdbhrhnm+ _mc _krn sn oqnuhcd _ bnlodshshud bqnrr,bgdbj nm sgd k_sshbd b_kbtk_shnm hm Rdbshnm 4-4- Hm sgd
enkknvhmf+ vd qduhdv vg_s vd adkhdud _qd sgd lnrs to,sn,c_sd du_kt_shnmr ne sgd ordtcnrb_k_q,onkd bnmsqhatshnmr hm sgd
khsdq_stqd+ vhsg _ rodbh_k dlog_rhr nm sgd ν/- Hm o_qshbtk_q+ vd cdl_mc sg_s sgqdd bqhsdqh_ ad lds9

0- hm _cchshnm sn sgd SEE mnql_khy_shnm fhudm ax sgd qd_k,ognsnm cdb_x vhcsgr+ _krn ghfg,dmdqfx bnmrsq_hmsr ltrs ad
etkehkkdc:

8/

Good agreement between 
data/dispersive and lattice approaches
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Ehf- 5.- Bnlo_qhrnm ne sgd ν/ SEE eqnl chrodqrhnm sgdnqx Z10+386[ &qdc(+ B@ Z08[ &aktd(+ _mc k_sshbd PBC Z11[ &xdkknv(- Vd rgnv ansg sgd rhmfkx,
&kdes( _mc sgd cntakx,uhqst_k &qhfgs( enql e_bsnqr-

sgd enql e_bsnq mnql_khy_shnm enq sgd dwodqhldms_k OqhlDw qdrtks Z417[928

Zν
/,onkd

λ &chro( + 52)/!1)6
�1)0 · 0/�00 .

Zν
/,onkd

λ &B@( + 52)5&1)6(· 0/�00 .

Zν
/,onkd

λ &k_sshbd( + 51)2&1)2(· 0/�00 ) &3-26(

Lnqdnudq+ _kk sgqdd tmcdqkxhmf ν/ SEEr _qd bnmrhrsdms vhsg d_bg nsgdq+ _r b_m ad nardqudc eqnl Ehf- 5/- Bnlahmhmf sgd
chrodqrhud du_kt_shnm ne sgd ν/ vhsg sgd B@ enq ζ _mc ζ∝+ vghbg _qd hm fnnc _fqddldms vhsg CxrnmżRbgvhmfdq dpt_shnmr
cdsdqlhm_shnmr+ vd _qqhud _s sgd enkknvhmf btqqdms drshl_sd enq sgd ordtcnrb_k_q,onkd bnmsqhatshnmr9

Zν
/!ζ!ζ∝,onkd

λ + 82)7!3)/
�2)5 · 0/�00 . &3-27(

vgdqd hmchuhct_k rxrsdl_shb tmbdqs_hmshdr ne B@ g_ud addm bnlahmdc khmd_qkx- Rhlhk_qkx+ bnlahmhmf sgd qdrtks nas_hmdc
eqnl B@ enq sgd ν/+ ζ+ _mc ζ∝ bnmsqhatshnmr+ vd nas_hm

Zν
/!ζ!ζ∝,onkd

λ + 83)2&4)2(· 0/�00 . &3-28(

vhsg cheedqdmbdr hm tmbdqs_hmshdr l_hmkx ctd sn sgd cheedqdms sqd_sldms hm rxrsdl_shb dqqnqr-

3-4- Bnmsqhatshnm ne svn,ohnm hmsdqldchZsd rsZsdr

@r chrbtrrdc hm Rdbshnm 3-1-2+ L_mcdkrs_l‘r cntakd,chrodqrhnm qdk_shnm Z556[ b_m ad trdc sn cdehmd sgd bnmsqhatshnmr
ne cheedqdms g_cqnmhb hmsdqldch_sd rs_sdr sn sgd GKaK sdmrnq _mc Zλ Z366[ hm _ lncdk,hmcdodmcdms v_x- Hm sgd tmhs_qhsx
qdk_shnm+ sgd khfgsdrs hmsdqldch_sd rs_sd hr _ rhmfkd mdtsq_k ohnm+ fhuhmf qhrd sn sgd ohnm,onkd bnmsqhatshnm Zν/,onkd

λ chrbtrrdc
hm Rdbshnm 3-3- Sgd mdws khfgsdrs hmsdqldch_sd rs_sd hr fhudm ax svn ohnmr+ dhsgdq ν/ν/ nq ν!ν�- Sgd tmhs_qhsx qdk_shnm enq
sgd GKaK sdmrnq dwoqdrrdr sgd chrbnmshmthsx ctd sn svn,ohnm hmsdqldch_sd rs_sdr hm sdqlr ne sgd rta,oqnbdrr β ×β × $ νν -
He nmd _ookhdr tmhs_qhsx _ rdbnmc shld _mc bnmrhcdqr hmsdqldch_sd rs_sdr hm sgd bqnrrdc rta,oqnbdrr β ×ν $ β ×ν + nmd b_m
rokhs sgd etkk svn,ohnm bnmsqhatshnm sn GKaK hmsn _ rtl ne cheedqdms anw snonknfhdr+ _r hkktrsq_sdc hm Ehf- 41- Hm sgd enkknvhmf+
vd chrbtrr sgd cheedqdms svn,ohnm bnmsqhatshnmr _mc sgdhq mtldqhb_k du_kt_shnm a_rdc nm chrodqrhnm sgdnqx-

3-4-0- Ohnm anw
Hm sgd tmhs_qhsx qdk_shnm enq β ×ν! $ β ×ν!+ sgd khfgsdrs hmsdqldch_sd rs_sd hr sgd bg_qfdc ohnm- Sgd rs_qshmf,onhms

sn cdehmd sghr bnmsqhatshnm hr _ ehwdc,r chrodqrhnm qdk_shnm enq β ×β × $ ν!ν�- Hm Qde- Z366[+ hs v_r rgnvm sg_s sgd otqd
onkd bnmsqhatshnm hm sghr chrodqrhnm qdk_shnm dw_bskx bnhmbhcdr vhsg sgd Anqm sdql hm _ rb_k_q PDC &rPDC( b_kbtk_shnm ne
β ×β × $ ν!ν�+ ltkshokhdc ax _ ohnm udbsnq enql e_bsnq &UEE( enq d_bg ne sgd svn nee,rgdkk ognsnmr _r hkktrsq_sdc hm
Ehf- 50- Sgd rd_ftkk sdql hr qdpthqdc hm _ rPDC Edxml_m,ch_fq_l b_kbtk_shnm sn nas_hm _ f_tfd,hmu_qh_ms dwoqdrrhnm- Hm
sgd chrodqrhud _ooqn_bg+ nmd ehqrs cdehmdr _ ASS sdmrnq cdbnlonrhshnm enq β ×β × $ νν Z38/+380[+ vghbg etkkx s_jdr b_qd
ne f_tfd hmu_qh_mbd+ hm _m_knfx sn sgd b_rd ne sgd GKaK sdmrnq hsrdke _r cdrbqhadc hm Rdbshnm 3-1-1- Hm sghr qdoqdrdms_shnm+
f_tfd hmu_qh_mbd hr l_mhedrs _mc sgdqd _qd svn ohnm,onkd tmhs_qhsx ch_fq_lr oqdrdms- Mnsd sg_s btsshmf sgd oqno_f_snq

28 Mnsd sg_s sgdrd cdsdqlhm_shnmr trd rkhfgskx cheedqdms hmots enq sgd SEE mnql_khy_shnm+ d-f-+ vhsg sgd B@ qdrtks toc_sdc sn OqhlDw,HH sgd roqd_c
_lnmf sgd bdmsq_k u_ktdr vntkc adbnld rkhfgskx k_qfdq–rdd oqduhntr bnlldmsr-
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RVakd 04
Bnlo_qhrnm ne svn eqdptdmskx trdc bnlohk_shnmr enq GKaK hm tmhsr ne 0/�00 eqnl 1//8 _mc _ qdbdms toc_sd vhsg ntq drshl_sd- Kdfdmc9 OcQU +
Oq_cdr+ cd Q_e_dk+ U_hmrgsdhm &——Fk_rfnv bnmrdmrtr‘‘(: M.IM + Mxeedkdq . Idfdqkdgmdq+ Mxeedkdq: I + Idfdqkdgmdq-
Bnmsqhatshnm OcQU&/8( Z364[ M.IM&/8( Z365+485[ I&06( Z16[ Ntq drshl_sd

ν/. ζ. ζ∝,onkdr 003&02( 88&05( 84)34&01)3/( 82)7&3)/(
ν . J ,knnor.anwdr �08&08( �08&02( �1/&4( �05)3&1(
R,v_ud νν qdrb_ssdqhmf �6&6( �6&1( �4)87&0)1/( �7&0(
rtasns_k 77&13( 62&10( 58)4&02)3( 58)3&3)0(
rb_k_qr � � � {

� 0&2(
sdmrnqr � � 0-0&0(
_wh_k udbsnqr 04&0/( 11&4( 6)44&1)60( 5&5(
t. c. r,knnor . rgnqs,chrs_mbd � 10&2( 1/&3( 04&0/(
b,knno 1-2 � 1-2&1( 2&0(
sns_k 0/4&15( 005&28( 0//)3&17)1( 81&08(

3-8-1- TmbdqsZhmsx drshlZsd
Fhudm sgd btqqdms q_sgdq tmr_shre_bsnqx sgdnqdshb_k rs_str ne sgd b_kbtk_shnm ne rnld bnmsqhatshnmr _mc vg_s hr _s rs_jd

&_ onrrhakd chrbnudqx ne ogxrhbr adxnmc sgd RL(+ hs hr vnqsgvghkd chrbtrrhmf sgd tmbdqs_hmsx drshl_sd hm rnld cds_hk _mc
vgdsgdq hs rgntkc ad l_cd lnqd bnmrdqu_shud- Bkd_qkx+ sgd sgdnqdshb_kkx lnqd cheehbtks drshl_sdr bnmbdqm sgd enkknvhmf
entq bnmsqhatshnmr9 rb_k_qr+ sdmrnqr+ _wh_k udbsnqr+ _mc rgnqs chrs_mbd- @r dwok_hmdc _anud+ rhmfkd,qdrnm_mbd,dwbg_mfd
bnmsqhatshnmr adxnmc sgd ordtcnrb_k_q nmdr _qd mns tm_lahftntrkx cdehmdc9 vgdmdudq nmd b_kbtk_sdr _ o_qshbtk_q
bnmsqhatshnm sn GKaK+ nmd g_r sn bgnnrd _ ——a_rhr‘‘ &ASS rds+ sn ad lnqd oqdbhrd( enq sgd GKaK Knqdmsy sdmrnq- Sgd bnmsqhatshnm
sn sgd ltnm f�1 vhkk cdodmc nm sghr bgnhbd tmkdrr _ rds ne rtl qtkdr hr r_shrehdc+ ats _r dwok_hmdc _anud he nmd bnmrhcdqr
_ rhmfkd qdrnm_mbd _s _ shld+ sghr hr sgd b_rd nmkx enq ordtcnrb_k_qr- Sghr onrdr sgd oqnakdl ne gnv sn pt_mshex sgd
tmbdqs_hmsx bnlhmf eqnl _m _lahfthsx+ vghbg g_r mn tmhptd _mrvdq- Oqnfqdrr hm _ccqdrrhmf sghr hrrtd vhkk qdpthqd _
b_kbtk_shnm ne sgdrd rhmfkd,qdrnm_mbd,dwbg_mfd bnmsqhatshnmr sg_s cndr mns rteedq eqnl rtbg _m _lahfthsx- @ onrrhakd
v_x sn _qftd hr sg_s hm sgd oqdrdmbd ne _m _lahfthsx nmd vntkc dwodbs _ rodbhehb b_kbtk_shnm vhsghm _ fhudm eq_ldvnqj
&_mc a_rhr( sn oqnuhcd sgd bnqqdbs nqcdq ne l_fmhstcd+ ats mns lnqd- Sghr rtffdrsr sn _rrhfm qntfgkx _ 0//" tmbdqs_hmsx
sn _mx bnmsqhatshnm _eedbsdc ax sghr _lahfthsx+ vghbg hr hmcddc sgd b_rd enq sgd rtl ne rb_k_qr _mc sdmrnqr _mc enq sgd
_wh_k,udbsnq bnmsqhatshnm-

@ q_sgdq dwsqdld _ooqn_bg vntkc ad sn bnlahmd _kk dqqnqr khmd_qkx hmrsd_c ne hm pt_cq_stqd+ hmbktchmf sgnrd mns _eedbsdc
ax sghr _lahfthsx+ ats vd cn mns sghmj sg_s sghr hr itrshehdc _mc vntkc ad nudqkx bnmrdqu_shud- Nmd rgntkc _krn jddo hm lhmc
sg_s sgd dqqnqr _rrhfmdc sn sgd rgnqs,chrs_mbd+ _wh_k,udbsnq+ gd_ux,rb_k_q+ _mc sdmrnq bnmsqhatshnmr _qd mns hmcdodmcdms+
rdd sgd chrbtrrhnm hm Rdbshnm 3-6+ sn sgd dwsdms sg_s btqqdmskx rnld ne sgdrd tmbdqs_hmshdr l_x _bst_kkx ad cntakd bntmsdc+
oqnuhchmf _mnsgdq q_shnm_kd enq mns rhlokx _cchmf _kk tmbdqs_hmshdr khmd_qkx-

Vd nosdc enq sgd enkknvhmf oqnbdctqd+ vghbg vd bnmrhcdq lnqd rdmrhakd- Vd ehqrs _cc sgd dqqnqr eqnl sgd hmcdodmcdms
c_s_,cqhudm+ chrodqrhud drshl_sdr enq sgd ordtcnrb_k_q onkdr+ sgd ohnm anw+ _mc νν qdrb_ssdqhmf hm pt_cq_stqd+ xhdkchmf
∗3)0 · 0/�00+ sgdm vd _cc sgd dqqnqr enq sgd lncdk,cdodmcdms drshl_sdr enq sgd rtl ne rb_k_qr _mc sdmrnqr+ sgd _wh_k,
udbsnq bnmsqhatshnm+ _mc sgd rgnqs,chrs_mbd bnmsqhatshnm khmd_qkx+ xhdkchmf ∗08·0/�00+ _mc ehm_kkx vd bnlahmd sgdrd svn
dqqnqr _mc sgd nmd eqnl sgd bg_ql pt_qj knno hm pt_cq_stqd- Sghr kd_cr sn ntq ehm_k drshl_sd ZGKaK

λ + 81&08(· 0/�00-

3-8-2- BnloZqhrnm sn sgd FkZrfnv bnmrdmrtr Zmc nsgdq bnlohkZshnmr
Sgd hmsdmrd _bshuhsx nm sgd GKaK bnmsqhatshnm ne sgd k_rs ehud xd_qr a_rdc nm sgd chrodqrhud _ooqn_bg g_r addm qdonqsdc

hm sghr rdbshnm _mc rtll_qhydc _anud- Hs hr trdetk sn chrbtrr gdqd hm rnld cds_hk vg_s _qd sgd qd_rnmr adghmc sgd bg_mfdr
hm sgd mtladqr bnlo_qdc sn sgd drshl_sdr trdc hm 1//8+ dudm sgntfg nm sgd rtqe_bd sgdx cn mns rddl sn ad rn k_qfd-
Vd vhkk _krn bnlldms nm _ edv qdbdms drshl_sdr- Hm S_akd 04 vd g_ud bnkkdbsdc sgd eqdptdmskx trdc bnlohk_shnmr enq
GKaK eqnl 1//8 ax Oq_cdr+ cd Q_e_dk+ _mc U_hmrgsdhm &——Fk_rfnv bnmrdmrtr‘‘+ OcQU&/8(( Z364+606[ _mc Idfdqkdgmdq _mc
Mxeedkdq &M.IM&/8(( Z365+485[+ _mc _ qdbdms toc_sd ne sgd k_ssdq sg_s g_r _ood_qdc hm sgd annj ax Idfdqkdgmdq &1mc dchshnm+
I&06(( Z16[- Ntq drshl_sd hr _krn rgnvm enq bnlo_qhrnm-

Sgd l_hm cheedqdmbd ne sgd ehqrs sgqdd drshl_sdr ax OcQU Z364[+ M.IM Z365+485[+ _mc I Z16[ sn ntq qdrtks hr sg_s sgdx
_qd a_rdc otqdkx nm lncdk b_kbtk_shnmr+ rdd _krn S_akd 02 hm Rdbshnm 3-1 enq cds_hkr ne sgd nqhfhm_k vnqjr enq rnld ne
sgd hmchuhct_k bnmsqhatshnmr- Rnld bnmrsq_hmsr eqnl sgdnqx+ d-f-+ eqnl BgOS _s knv dmdqfhdr nq eqnl rgnqs chrs_mbdr hm
oPBC+ _mc eqnl dwodqhldms _qd s_jdm hmsn _bbntms hm sgnrd lncdkr+ d-f-+ nm sgd rhmfkx,uhqst_k ordtcnrb_k_q SEEr- Ats
sghr lncdk cdodmcdmbd l_jdr hs udqx cheehbtks sn drshl_sd sgd tmbdqs_hmsx hm _ qdkh_akd v_x- Nm sgd nsgdq g_mc+ ntq
drshl_sdr enq sgd mtldqhb_kkx cnlhm_ms bnmsqhatshnmr eqnl sgd khfgs ordtcnrb_k_q onkdr ν/. ζ. ζ∝ _mc enq _ rtars_msh_k o_qs
ne sgd svn,ohnm hmsdqldch_sd rs_sd hm GKaK &ohnm,anw _mc R,v_ud νν qdrb_ssdqhmf( _qd mnv a_rdc nm lncdk,hmcdodmcdms
chrodqrhnm qdk_shnmr nq B_msdqatqx _ooqnwhl_msr _mc sgd dqqnq drshl_sdr _qd k_qfdkx cqhudm ax sgd oqdbhrhnm ne sgd hmots
c_s_- Sn dlog_rhyd sghr rhfmhehb_ms oqnfqdrr vd g_ud du_kt_sdc sgd rtl ne sgdrd bnmsqhatshnmr _mc bnlo_qdc sgd cheedqdms

004

• Huge improvement in pole contributions
• All contributions computed or estimated
• Errors added in quad for dispersive results
• Errors added linearly for model-dependent results
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• RBC: first lattice calculation with all errors controlled.

• 1 G core-hours on ALCF’s Mira (BG/Q). 

• 1st HLbL calculation was done on USQCD resources                                     
(Blum, et al., PRL 114 (2015))

• Crucial for Standard Model Comparison

• Included in Muon g-2 Theory Initiative average

• 92(19)x 10-11 (phenomenology)

• 90(17)x 10-11 (phenomenology+lattice)

• Unlikely to explain discrepancy with experiment

𝑎#$%&% = 7.87 ± 3.06 ± 1.77×10'()

Blum, et al. (RBC) PRL 124 (2020)
Editor’s Suggestion 2

+ + · · ·

FIG. 1. Leading contributions from hadronic light-by-light
scattering to the muon anomaly. The shaded circles repre-
sent quark loops containing QCD interactions to all orders.
Horizontal lines represent muons. Quark- connected (left) and
disconnected (right) diagrams are shown. Ellipsis denote di-
agrams obtained by permuting the photon contractions with
the muons and diagrams with three and four quark loops with
photon couplings (See Fig. 3).

detail in Ref. [31], and the diagrams to be computed are
shown in Figs. 2 and 3. It is still not possible to do all
of the sums over coordinate space vertices exactly with
currently available compute resources. Therefore we re-
sort to a hybrid method where two of the vertices on
the hadronic loop(s) are summed stochastically: point
source propagators from coordinates x and y are com-
puted, and their sink points are contracted at the third
internal vertex z and the external vertex xop. Since the
propagators are calculated to all sink points, z and xop
can be summed over the entire volume. The sums over
vertices x and y are then done stochastically by comput-
ing many (O(1000)) random pairs of point source prop-
agators. To do the sampling e�ciently, the pairs are
chosen with an empirical distribution [? ] designed to
frequently probe the summand where it is large, less fre-
quently where it is small. Since QCD has a mass-gap,
we know the hadronic loop is exponentially suppressed
according to the distance between any pair of vertices,
including |x ≠ y|. As we will see, the main contribution
comes from distances less than about 1 fm. The muon
line and photons are computed e�ciently using FFT’s;
however, because they must be calculated many times,
the cost is not negligible.

Two additional, but related, parts of the method bear
mentioning. First, the form dictated by the right hand
side of Eq. 2 suggests the limit q æ 0 is unhelpful since
the desired F2 term is multiplied by 0. Second, in our
Monte Carlo lattice QCD calculation the error on the
F2 contribution blows up in this limit. The former is
avoided by evaluating the first moment with respect to
xop at the external vertex and noticing that an induced
extra term vanishes exponentially in the infinite volume
limit [31]. This moment method allows the direct calcula-
tion of the correlation function at q = 0, and hence F2(0).
To deal with the second issue, we first recall that it is the
Ward identity that guarantees the unwanted term to van-
ish in the moment method. We thus enforce the Ward
identity exactly on a configuration-by-configuration ba-
sis [31]. i.e., before averaging over gauge fields by insert-
ing the external photon at all possible locations on the
quark loop in Fig. 2. This makes the factor of q in Eq. (2)
exact for each measurement and not just in the average
and reduces the error on F2(0) significantly. Implement-

Point Source Photon Method 7/20

xsrc xsnky�, �� z�, �� x�, ��

xop, �

z,�

y, � x, �

xsrc xsnky�, �� z�, �� x�, ��

xop, �
z,�

y, � x, �

xsrc xsnky�, �� z�, �� x�, ��

xop, �
z,�

y, � x, �

• Point source photons at x and y.

• Importance sampling is used in choosing x and y.

� Major contribution comes from the region where x and y are not far separated.

� In fact, we can evaluate all possible (upto discrete symmetries) relative positions for
distance less than a certain value rmax, which is normally set to be 5 lattice units.

• Moment method for xop. Evaluate F2(q2) at q = 0 directly.

Method published in Phys.Rev. D93 (2016) no.1, 014503. Order 1000 improvement over the
previous approach [Phys.Rev.Lett. 114 (2015) no.1, 012001].

FIG. 2. Connected diagrams. Sums over x and y are com-
puted stochastically. The third internal vertex z and the ex-
ternal vertex xop are summed over exactly. The sums on the
muon line are done exactly using FFT’s. Strong interactions
to all orders are not shown.

xsrc xsnkz′,κ′ y′,σ′ x′, ρ′

xop, ν

z,κ y,σ x, ρ

xsrc xsnky′,σ′ x′, ρ′ z′,κ′

xop, ν

z,κy,σ x, ρ

xsrc xsnky′,σ′ z′,κ′ x′, ρ′

xop, ν

z,κy,σ x, ρ

xsrc xsnkz′,κ′ y′,σ′ x′, ρ′

xop, ν

z,κ y,σ x, ρ

xsrc xsnky′,σ′ x′, ρ′ z′,κ′

xop, ν

z,κ
y,σ x, ρ

xsrc xsnkz′,κ′
y′,σ′ x′, ρ′

xop, ν

z,κ y,σ x, ρ

FIG. 3. Disconnected diagrams contributing to the muon
anomaly. The top leftmost is the leading one, and does not
vanish in the SU(3) flavor limit. Strong interactions to all
orders, including gluons connecting the quark loops, are not
shown.

ing the above techniques produces an order O(1000) fold
improvement in the statistical error over the original non-
perturbative QED method used to compute the hadronic
light-by-light scattering contribution [30].
The quark-disconnected diagrams that occur at O(–3)
are shown Fig. 3. All but the upper-leftmost diagram
vanish in the SU(3) flavor limit and are suppressed by
powers of mu,d ≠ ms, depending on the number of quark
loops with a single photon attached. For now we ignore
them and concentrate on the leading disconnected dia-
gram which is computed with a method [32] similar to
the one described in the first part of this section. To en-
sure the loops are connected by gluons, explicit vacuum
subtraction is required. However, in the leading diagram
the moment at xop implies the left-hand loop in Fig. 3
vanishes due to parity symmetry, and the vacuum sub-
traction is done to reduce noise.
As for the connected case, two point sources (at y and
z in Fig. 3) are chosen randomly, and the sink points
(at x and xop in Fig. 3) are summed over. We com-
pute M (usually M = 1024) point source propagators
for each configuration. All M2 combinations are used to
perform the stochastic sum over y ≠ z. This “M2 trick”
[31, 32] is crucial to bring the statistical fluctuations of
the disconnected diagram under control (see Sec. B of
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FIG. 5. Infinite volume extrapolation. Connected (top), dis-
connected (middle), and total (bottom). We have use the
hybrid method to calculate the continuum limit for the con-
nected contribution.

ensembles, and the I-DSDR ensembles are used to ob-
tain the volume dependence only. In particular, the
32Dfine ensemble does not a�ect the fitted aµ at all. It
only helps to determine the parameter cD

2 , which pro-
vides evidence for the size of the potential O(a4) sys-
tematic errors. We find for the connected, disconnected,
and total contributions, acon

µ = 23.76(3.96)stat(4.88)sys ◊

10≠10, adiscon
µ = ≠16.45(2.13)stat(3.99)sys ◊ 10≠10, atot

µ =
7.47(4.24)stat(1.64)sys ◊10≠10, respectively. For the total
contribution, we fit the total contribution for each ensem-
ble, which is slightly di�erent from the sum of the fitted
results from the connected and the disconnected parts.
Notice there is a large cancellation between the connected
and disconnected diagrams that persists for a æ 0 and
L æ Œ, so even though the individual contributions are
relatively well resolved, the total is not. The cancella-
tion is expected since hadronic light-by-light scattering
at long distance is dominated by the fi0 which contributes
to both diagrams, but with opposite sign [34, 43, 44]. No-
tice also that the a2 and 1/L2 corrections are individually

con discon tot

aµ 23.76(3.96) -16.45(2.13) 7.47(4.24)
sys O(1/L3) 2.34(0.41) 1.72(0.32) 0.83(0.56)

sys O(a4) 0.83(0.53) 0.71(0.28) 0.96(0.94)
sys O(a2 log(a2)) 0.21(0.18) 0.25(0.09) 0.03(0.17)

sys O(a2/L) 4.18(2.37) 3.49(1.37) 0.86(2.20)
sys strange con 0.30 0 0.30
sys sub-discon 0 0.50 0.50

sys all 4.88(2.17) 3.99(1.29) 1.64(1.15)

TABLE II. Central value and various systematic errors. Num-
bers in parentheses are statistical error for the corresponding
values.

con discon tot

aµ 24.16(2.30) -16.45(2.13) 7.87(3.06)
sys hybrid O(a2) 0.20(0.45) 0 0.20(0.45)

sys O(1/L3) 2.34(0.41) 1.72(0.32) 0.83(0.56)
sys O(a4) 0.88(0.31) 0.71(0.28) 0.95(0.92)

sys O(a2 log(a2)) 0.23(0.08) 0.25(0.09) 0.02(0.11)
sys O(a2/L) 4.43(1.38) 3.49(1.37) 1.08(1.57)

sys strange con 0.30 0 0.30
sys sub-discon 0 0.50 0.50

sys all 5.11(1.32) 3.99(1.29) 1.77(1.13)

TABLE III. Central value and various systematic errors, use
the hybrid continuum limit for the connected diagrams. Num-
bers in parentheses are statistical error for the corresponding
values.

large but also tend to cancel in the sum.

The systematic errors mostly result from the higher or-
der discretization and finite volume e�ects which are not
included in the fitting formula Eq. (5). We therefore
estimate the errors through the change of the results af-
ter adding a corresponding term in the fitting formula.
For O(1/L3), we add another 1/(mµL)3 term with the
same coe�cient as the 1/(mµL)2 term. For O(a4) ef-
fects, we add an a4 term also for the Iwasaki ensembles
with coe�cient similar to the I-DSDR ensembles. For
O(a2 log(a2)) e�ects, we multiply the discretization ef-
fect terms in Eq. (5) by (1 ≠ (–S/fi) log(a2 GeV)). For
O(a2/L), we multiply the discretization e�ect terms in
Eq. (5) by (1 ≠ 1/(mµL)). In addition, for the only two
contributions which we have not included in the present
HLbL calculation: (a) strange quark contribution to the
connected diagrams; (b) sub-leading disconnected dia-
grams’ contribution. We have performed lattice calcula-
tions with the QEDŒ approach [48] on the 24D ensemble
to estimate the systematic errors. These systematic er-
rors are added in quadrature and summarized in Tab. II.
In the supplementary materials, these systematic errors
are discussed in more detail.
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aµ-HLbL outlook

• More data for data-driven approach

• RBC: QED∞ calculation, 10-20% accuracy (5 years)

• New result from Mainz group (arXive:2104.02632)

• Other lattice groups starting (BMW, FHM, …)

• Combined 10% result (or better) within 5 years possible

22



Outlook
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• Standard Model remarkable success
• Combining BNL and Fermilab experiments

and using muon g-2 theory initiative SM value,
discrepancy grew from 3.7 to 4.2 s 

• Using BMW20 lattice value for HVP, 
discrepancy is 1.5 s

• Consistency of data-driven and lattice HVP 
calculations crucial for discovery of new physics

• HLbL in good shape- can’t rescue SM
• Improved lattice calculations in progress



Acknowledgements

24

• Work partially supported by US Department 
of Energy

• Computations done under ALCC at Argonne 
Large Computing Facility and XSEDE (NSF) at 
Texas Advanced Computing Center



Further viewing/reading

• Trevor Noah: Physics may be a lie (2:09 minute mark)

• The Muon g–2 Anomaly Explained

• Fermilab E989 announces first results

• An anomalous moment for the muon

• Muon g-2 Theory Initiative white paper
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https://www.youtube.com/watch?v=u0bakK6g8jY&list=PLeskMkEaHJYdfO2qej3byl3dr24Z27uHK&index=3
https://www.youtube.com/watch?v=u0bakK6g8jY&list=PLeskMkEaHJYdfO2qej3byl3dr24Z27uHK&index=3
https://www.youtube.com/watch?v=81PfYnpuOPA
https://cerncourier.com/a/an-anomalous-moment-for-the-muon/
https://inspirehep.net/files/2cb4d4b7c3d801a2bd62c9495286b72e

