

Comparison of methods for elliptic flow measurements at NICA energy range

Vinh Ba Luong, Dim Idrisov, Peter Parfenov, Arkadiy Taranenko, Alexander Demanov National Research Nuclear University MEPhI

20th Lomonosov Conference on Elementary Particle Physics

MSU, Moscow, 19-25 Aug. 2021

This work is supported by:

the RFBR grant No. 18-02-40086, the European Union's Horizon 2020 program No. 871072, the Russian Academic Excellence Project (contract No. 02.a03.21.0005, 27.08.2013), the Ministry of Science and Higher Education of the Russian Federation, Project "Fundamental properties of elementary particles and cosmology" No. 0723-2020-0041

Outline

- Elliptic flow v_2 at NICA energies
- Description of methods for flow measurements and their sensitivity to flow fluctuations
- Performance of v_2 of identified charged hadrons in MPD
- Summary

Elliptic flow at NICA energies

v₂ is sensitive to the properties of the strongly interacting matter produced in relativistic heavy-ion collisions

Methods for v_2 measurements and their sensitivity to fluctuations σ_{v_2}

21.08.2021

V.Luong – 20th LomCon

MPD Experiment at NICA

- 20M at $\sqrt{s_{_{\rm NN}}} = 7.7 \text{ GeV}$
- 10M at $\sqrt{s_{_{\rm NN}}} = 11.5 \text{ GeV}$
- Centrality determination:
 - b based on MC-Glauber method (see Idrisov's talk)
- Event plane determination: TPC
- Track selection:
 - Primary tracks
 - $N_{\text{TPC hits}} \ge 16$
 - ▶ 0.2 < p_T < 3.0 GeV/c</p>
 - ► |η| < 1.5
 - PID based on PDG

Multi-Purpose Detector (MPD) Stage 1

V.Luong – 20th LomCon

Performance of v_2 of pions and protons in MPD

Reconstructed and generated v_2 of pions and protons have a good agreement for all methods

Summary

- v₂ is sensitive to properties of the strongly interacting matter at NICA energy range
 - At $\sqrt{s_{NN}} = 4.5$ GeV, v_2 from UrQMD, SMASH are in a good agreement with the experimental data
 - ► At $\sqrt{s_{NN}} \ge 7.7$ GeV, UrQMD & SMASH underestimate v_2 need hybrid models with QGP phase, such as vHLLE+UrQMD
- Comparison of methods for v₂ measurements:
 - The differences between methods are well understood and could be attributed to nonflow and fluctuations
- Feasibility study for elliptic flow in MPD:
 - v₂ of identified charged hadrons: results from reconstructed and generated data are in a good agreement for all methods

This work is supported by:

the RFBR grant No. 18-02-40086, the European Union's Horizon 2020 program No. 871072, the Russian Academic Excellence Project (contract No. 02.a03.21.0005, 27.08.2013), the Ministry of Science and Higher Education of the Russian Federation, Project "Fundamental properties of elementary particles and cosmology" No. 0723-2020-0041

Backup slides

Phase Diagram of the Strongly-Interacting Matter

• Top RHIC/LHC:

- Validation of the cross-over transition leading to the sQGP
- Access to high T, small μ_B
- Beam-energy scan programs: RHIC/SPS/NICA/FAIR:
- Broad domain of the (T, μ_B) -plane
- Access to different systems, search for first-order phase transition and critical end point

Anisotropic Collective Flow at top RHIC/LHC

PRL **110** (2013) no.1, 012302

- Initial eccentricity (and its attendant fluctuations) $\epsilon_{\rm n}$ drives momentum anisotropy $v_{\rm n}$ with specific viscous modulation
- v_1 directed flow, v_2 elliptic flow, v_3 triangular flow
- ν_n (p_T, centrality):
 - sensitive to the early stages of collision
 - important constraint for transport properties: EoS, η/s, ζ/s, etc.