

Feasibility of thermal photon measurements in the future MPD experiment at NICA

N. Burmasov, <u>D. Ivanishchev</u>, D. Kotov, E. Kryshen, M. Malaev, V. Riabov, Yu. Riabov (NRC «Kurchatov Institute» - PNPI) for the MPD collaboration

This work was supported by RFBR according to the research project № 18-02-40045

Heavy ion collisions at NICA

- A mega-science project NICA, Dubna, JINR
- Modernization of existing Nuclotron facility
- Parameters:
 - ✓ relativistic ions up to Au, $\sqrt{s_{NN}} = 4-11 \text{ GeV}$ ✓ polarized p and d, $\sqrt{s_{NN}} = 27 \text{ GeV}$ (for p) ✓ luminosity $10^{27} \text{ cm}^{-2}\text{s}^{-1}$
- Working experiment: BM@N (fixed target)
- Experiments under construction: MPD, SPD (collider)

• Study of the phase diagram in the region of high baryonic density and intermediate temperatures

Ouarks and Gluons

Quarkyonic phase

Color Super-

n_=0.16 fm-3

conductor

Net baryon density n/ no

transition

Proto-

Neutron stars

• Extension of modern heavy-ion programs at RHIC and the LHC to lower energies

Thermal radiation in heavy ion collisions

- Photons leave the medium without interaction
- Black body radiation: inverse slope proportional to T_{eff}

 e^+

Effective temperature vs energy

T_{eff} vs. collision energy

J. Phys.: Conf. Ser. 1070 (2018) 012012

Photon reconstruction: two methods

- Electromagnetic calorimeters
 - Efficient at $p_T > 2 \text{ GeV/c}$
 - Hardware trigger capabilities
- Photon conversion $\gamma \rightarrow e^+e^-$ in the material
 - $P = 1 \exp(-7/9 x/X_0)$
 - Efficient at $0.5 < p_T < 4 \text{ GeV/c}$
 - Much better resolution at low p_T

Conversions at MPD

- CMS Energy: 4-11 GeV
- Design luminosity: 10²⁷ cm⁻¹ s⁻¹
- Stage 1: TPC, TOF, ECAL, FHCal, FFD
- Stage 2: + ITS + EndCap

Main conversion structures in Stage 1:

- Beam pipe: 0.3% X₀
- Inner TPC barrel structures: 2.4% X₀ Future:
- Inner tracking system

Conversion reconstruction efficiency

- Studied with MPDROOT Stage 1 setup
- Using MpdParticle to build secondary vertices
- Cuts optimized to maximize signal significance
- Contribution of (non-gamma) background < 5%

Typical cuts on electrons:

- |ŋ|<1
- p_T > 50 MeV/c
- at least 20 hits in TPC
- +/-4σ electron PID in TPC/TOF

Typical cuts on ee pair:

- Small DCA (χ² < 10)
- Vertex R > 10 cm
- Direction to vertex: θ < exp(-2.777-2.798* p_T) + 0.0175
- m_{ee}< 0.022 + 0.017* p_T [GeV]
- ee plane orientation wrt B: $\Psi_{Pair} < 0.1 \text{ rad}$

p_T -differential direct photon yields

- Universal scaling of p_{T} -differential direct photon yields at moderate p_{T} is observed at RHIC/LHC
- It can be used to predict p_T spectra of direct photons at NICA energies for $p_T > 0.6$ GeV/c
- Switch to thermal spectrum at $p_T < 0.6 \text{ GeV/c: } dN/dp_T \sim p_T \exp(-p_T/T)$
- Using conservative effective temperature T = 150 MeV (see e.g. PRC 93 (2016) 054901)

Challenge: decay photons

Inclusive photon spectra are dominated by decay photons

$$R_{\gamma} = \frac{\gamma_{\rm inc}}{\gamma_{\rm deca}}$$

Relative contributions of different hadrons to the total decay photon spectrum as a function of the decay photon transverse momentum

Neutral meson reconstruction

- Using 10M minimum bias URQMD events
- Pion signal is clearly visible in a wide p_τ range

Inclusive photon spectra and R_v ratio

- Systematic uncertainties on R_v can be reduced to ~2-5%
- Conclusion: direct photon yields can be extracted with good accuracy down to low \boldsymbol{p}_{T}

 $\gamma_{
m direct} = (1 - rac{1}{R})$

1.4

R_v and Temperature uncertainties

• Direct photon spectra with R_v systematic uncertainty 2%

$$\gamma_{ ext{direct}} = (1 - rac{1}{R_{\gamma}}) \cdot \gamma_{ ext{inc}}$$

- Thermal spectrum at $p_T < 0.6 \text{ GeV/c: } dN/dp_T \sim p_T \exp(-p_T/T)$
- T_{eff} uncertainty ~ 10%
- Decrease in R_v increase T_{eff} uncertainty

Dedicated photon converter?

Resolution of track parameters

Conversions in Stage 2

Inner tracking system in Stage 2

- 5 layers of Monolithic Active Pixel Sensors
- ~0.4% X₀ in current design
- Photon reconstruction efficiency slightly improves compared to stage 1 setup

Conclusions and outlook

- Photons are valuable probes of dense hadronic matter produced in heavy ion collisions
- Photon conversion method is a powerful tool to measure photon and neutral meson spectra
- Reconstruction of thermal photon yields looks promising at MPD
- Feasibility studies on the dedicated converter and Stage 2 setup show promising results

BACKUP

Photon spectra at RHIC and LHC

PHENIX (AuAu @ 200 GeV)

ALICE (PbPb @ 2760 GeV)

PHENIX: Phys. Rev. Lett. 104 (2010) 132301

T_{eff} = 297 ± 12 (stat) ± 41 (syst) MeV

Integrated direct photon yield

No reliable predictions for photons in UrQMD/PHSD -> using data driven method

Phys. Rev. Lett. 123, 022301

The integrated direct photon yield:

- scales as (dN_{ch}/dη)^{1.25} in a wide range of multiplicities/collision energies
- the scaling is violated in small collision systems / small multiplicities ($dN_{ch}/d\eta < 20$)
- AA yield is a factor of ~10 larger than the N_{coll}-scaled yield in pp

Assuming this scaling still holds at lower energies, we can expect universal multiplicity scaling for

- (0-60)% centralities at 11 GeV
- (0-40)% centralities at 4 GeV

Neutral meson reconstruction efficiency

- Embedding technique used to study reconstruction efficiency vs p_{T}
- 700 000 min. bias UrQMD events @ 11 GeV
- 500 π⁰ + 500 η embedded with flat p_{T} distribution
- Neutral meson reconstruction efficiency $\sim 10^{-4}$
- π^0 peak is significantly narrower with conversion

