

Status of the LEGEND experiment

Lomonosov conference
20 Aug 2021

Marija Redchuk on behalf of the LEGEND collaboration

What I want you to remember about

What I want you to remember about LEGEND

LEGEND = Large Enriched Germanium Experiment for Neutrinoless double beta Decay

1. Neutrinoless double beta decay (0νββ)

- create matter without antimatter
- lepton number violation
- not observed yet

2. Enriched germanium detectors

- leading material for $0\nu\beta\beta$ searches
- excellent energy resolution
- topological discrimination

3. The LEGEND experiment

- indeed large
- aims to observe 0vββ in germanium
- or push the lower limit on decay half-life
- synergy with other neutrino physics experiments

Neutrinoless double beta decay

Double beta decay (2νββ)

 76 Ge → 76 Se + 2e⁻ [+ 2 $\overline{\nu}$ e]

Neutrinoless double beta decay (0νββ)

Dirac neutrino

$$\nu \neq \overline{\nu}$$

In nature we only observe **VL** and **VR**

Majorana neutrino

$$\nu = \bar{\nu}$$

That's because they are simply just **VL** and **VR**

Some neutrino physics

Neutrino oscillation

flavor change during propagation

Neutrino mixing matrix

mathematical formalism & measurable parameters

new mixing matrix

$$\begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_1} & 0 \\ 0 & 0 & e^{i\alpha_2} \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}$$
 propagate in space mixing matrix matrix weakly

Ve V1 V2 Vµ Vµ V3 VT

Neutrino mass ordering

which mass state is the lightest?

Lomonosov conference • Aug 2021 • Status of the LEGEND experiment • Mariia Redchuk

Back to neutrinoless double beta decay

Neutrino physics point of view

Mass ordering

 $mlightest = V_3$

mlightest = V1

10-1

mass

ordering

experiments 10⁻⁴ 10⁻³

mixing matrix (Majorana phases)

Experimental point of view

Majorana mass
$$m_{etaeta} = |\sum U_{ei}^2 m_i|$$

Ονββ

experiments

 10^{-2}

m_{lightest} [eV]

cosmology

neutrino

mass

experiments

100

 10^{-1}

Ονββ signature
$$Q_{etaeta}=M_{init}-M_{final}-2m_e$$

Decay half-life zero background regime

exposure $T_{1/2}^{0
u\beta\beta} \sim \frac{Mt}{N^{0
u\beta\beta}}$ events

1σ sensitivity in presence of background

$$T_{1/2}^{0
uetaeta}\sim\sqrt{rac{Mt}{{
m BI}\cdot\Delta E}}$$
 background energy resolution

Connection

 $m_{\beta\beta}^2 = (F^{0\nu} \cdot |\mathcal{M}^{0\nu}|^2 \cdot T_{1/2}^{0\nu\beta\beta})^{-1}$

Neutrinoless double beta decay

Germanium experiment technology

Germanium detectors

- germanium crystal → semiconductor
- implanted p+ and n+ contacts → diode
- crystal fully depleted
- germanium serves as both detector and source of $2v\beta\beta/0v\beta\beta$

76
Ge → 76 Se + 2e⁻ [+ 2 Ve]

- particles deposit energy in the crystal
- electron-hole pairs drift towards respective contacts
- similar trajectories due to *E field* profile → position-independet

- mirror charge on the p+ contact → signal
- reconstruct energy based on the pulse risetime and amplitude

 a Redchuk

Spectrum before analysis cuts

Window around Q\beta\beta is blinded!

 $Q_{\beta\beta}(^{76}Ge) = 2039.061 \pm 0.007 \text{ keV}$

Background index is computed based on the rest of the spectrum

Germanium detectors

Pulse shape discrimination

Germanium experiments

Lomonosov conference • Aug 2021 • Status of the LEGEND experiment • Mariia Redchuk

All analysis cuts

- Quality cuts
- Muon veto
- LAr veto

- Detector anti-coincidence
- Pulse shape discrimination

GERDA experiment

World leading background index

$$BI = 5.2^{+1.6}_{-1.3} \times 10^{-4} \frac{counts}{keV \text{ kg yr}}$$

Energy resolution

$$\Delta E = (2.6 \pm 0.2) \mathrm{keV}$$

Germanium experiments

GERDA			
mass	44.2 kg		
exposure	100 kg yr		
bkg idx	(5.2±1.6)·10 ⁻⁴ cts/(keV kg yr)		
resolution	(2.6 ± 0.2) keV		

MAJORANA Demonstrator			
mass	29.7 kg		
exposure	75 kg yr		
bkg idx	(4.7±0.8)·10 ⁻³ cts/(keV kg yr)		
resolution	(2.53 ± 0.08) keV		

LEGEND-200 goal			
mass	200 kg		
exposure	1000 kg yr		
bkg idx	2·10 ⁻⁴ cts/(keV kg yr)		
resolution	2.5 keV		

LEGEND-1000 goal			
mass	1000 kg		
exposure	10 000 kg yr		
bkg idx	10 ⁻⁵ cts/(keV kg yr)		
resolution	2.5 keV		

Neutrinoless double beta decay

Germanium experiment technology

Status of the LEGEND experiment

LEGEND baseline design

Laboratori Nazionali del Gran Sasso

largest underground research center

LEGEND-200

LEGEND-1000

LEGEND timeline

LEGEND timeline and status

LEGEND prospects in 0νββ

Virtually background free!
Unambiguous discovery
even with a handful of counts

In case of no discovery, push lower limit 2 orders of magnitude above current best

LEGEND prospects in 0νββ

Discovery potential

Limit setting

$$T_{1/2}^{0\nu\beta\beta} \sim \sqrt{\frac{Mt}{\mathrm{BI} \cdot \Delta E}} \qquad T_{1/2}^{0\nu\beta\beta} \sim \frac{Mt}{N^{0\nu\beta\beta}} \qquad m_{\beta\beta}^2 = (F^{0\nu} \cdot |\mathcal{M}^{0\nu}|^2 \cdot T_{1/2}^{0\nu\beta\beta})^{-1}$$

Lomonosov conference • Aug 2021 • Status of the LEGEND experiment • Mariia Redchuk

What else can LEGEND do?

Alternative 0vββ mechanisms

Long-range mechanisms e.g. light Majorana neutrino

Short-range mechanisms = heavy particles

- SUSY particles e.g. gluions or squarks
- right-handed currents with heavy neutrinos or scalar fields e.g. Higgs
- ...

Multiple mechanisms at the same time could be possible

LEGEND can probe short-range mechanisms beyond what other experiments can do

Other Beyond Standard Model searches

+ BSM physics in ³⁶Ar (ECEC)

What I want you to remember about LEGEND

LEGEND = Large Enriched Germanium Experiment for Neutrinoless double beta Decay

1. Neutrinoless double beta decay (0νββ)

- create matter without antimatter
- lepton number violation
- not observed yet

2. Enriched germanium detectors

- leading material for $0\nu\beta\beta$ searches
- excellent energy resolution
- topological discrimination

3. The LEGEND experiment

- indeed large
- aims to observe 0vββ in germanium
- or push the lower limit on decay half-life
- synergy with other neutrino physics experiments

More about LEGEND

LEGEND website

https://legend-exp.org

LEGEND Preconceptual Design Report

https://inspirehep.net/literature/1892243

FIG. 15. An example of the clear separation of signal and background in the complementary PSD and anti-coincidence classifiers from Gerda calibration data. Two types of events are considered: a 208 Tl double-escape peak (DEP) event and a 212 Bi full-energy peak (FEP) event. Both of these are characteristic of backgrounds that cause peaks in the Ge spectrum. The orange diamonds indicate the classification of events as signal-like in one of the two parameter spaces, the magenta rectangles highlight the distribution in each parameter for background like events. Unlike the two cases here, a $0\nu\beta\beta$ decay event would be classified as a signal in both observable parameters.

Chat with me during the coffee break Contact me if you have questions

mariia.redchuk@pd.infn.it

THANK YOU!

9 countries • 47 institutions • 260 members

Backup

Dirac vs Majorana neutrino

But if $\mathbf{v} = \overline{\mathbf{v}}$, does that mean \mathbf{v} can participate in inverse beta decay \mathbf{r}

For Majorana, there is no such thing as $\overline{\mathbf{v}}$, just \mathbf{v} , what matters is helicity

Dirac

ves

 $\nu_e^L + p \rightarrow n + e^+$

 $\bar{\nu}_e^R + p \rightarrow n + e^+$

never

 $\nu_e^R + p \rightarrow n + e^+$

 $\bar{\nu}_{e}^{L} + p \rightarrow n + e^{+}$ yes but ~0% chance

never

Majorana

 $\nu_e^R + p \rightarrow n + e^+$

ves

 $\nu_a^L + p \rightarrow n + e^+$ yes but ~0% chance

Dirac: so far, we have only observed ∇ L and ∇ R

Majorana: they are simply just VL and VR

Dirac vs Majorana neutrino

	notation	chirality	$p(l^-)$	$p(l^+)$
Dirac ν	$ u_L^D$	L	$1 - \left(\frac{m_{\nu}}{2E}\right)^2$	0
	$ u_R^D$	R	$\left(\frac{m_{ u}}{2E}\right)^2$	0
Dirac $\bar{\nu}$	$ar{ u}_L^D$	L	0	$\left(\frac{m_{ u}}{2E}\right)^2$
2	$ar{ u}_R^D$	R	0	$1 - \left(\frac{m_{\nu}}{2E}\right)^2$
Majorana ν	$\nu_L^M = \bar{\nu}_L^M$	L	$1 - \left(\frac{m_{\nu}}{2E}\right)^2$	$\left(rac{m_ u}{2E} ight)^2$
Majorana $\bar{\nu}$	$\bar{\nu}_R^M = \nu_R^M$	R	$\left(\frac{m_{ u}}{2E}\right)^2$	$1 - \left(\frac{m_{\nu}}{2E}\right)^2$

Dirac: so far, we have only observed ∇ L and $\overline{\nabla}$ R

Majorana: they are simply just **V**L and **V**R

Neutrino observables

$$m_{\beta\beta} = |\sum U_{ei}^2 m_i|$$

$$m_{\beta} = \sqrt{\sum m_i^2 |U_{ei}|^2}$$

$$\Sigma \text{ or } m_{cosm} = \sum m_i$$

Effective Majorana mass

"Incoherent sum" of ve mass eigenstates ("mass of electron neutrino")

Sum of neutrino masses cosmological/astrophysical observable

Lomonosov conference • Aug 2021 • Status of the LEGEND experiment • Mariia Redchuk

Two-neutrino and neutrinoless double beta decay

- 35 naturally occurring isotopes which can decay through $2\nu\beta$ - β with forbidden or suppressed β -decay
- Only 6 for $2\nu\beta+\beta+$, small Q values and much longer livetimes

Limits by present-generation experiments

Experiment	Isotope	${\bf Exposure} \ [{\bf kg\text{-}yr}]$	$T_{1/2}^{0 u}[{f 10}^{25}~{f yr}]$	$m_{etaeta}[\mathbf{meV}]$
Gerda 77	$^{76}\mathrm{Ge}$	127.2	18	79 - 180
Majorana [78]	$^{76}{ m Ge}$	26	2.7	200 - 433
KamLAND-Zen <mark>79</mark>	$^{136}\mathrm{Xe}$	594	10.7	61 - 165
EXO-200 80	$^{136}\mathrm{Xe}$	234.1	3.5	93 - 286
CUORE 81	$^{130}\mathrm{Te}$	1038.4	2.2	90 - 305

Alternative mechanisms for 0νββ

Long-range mechanisms e.g. light Majorana neutrino $T_{1/2}^{0
u\beta\beta}\sim m_{\beta\beta}$

Short-range mechanisms = heavy particles

- **SUSY particles** e.g. gluions or squarks
- Right-handed currents with heavy neutrinos or scalar fields e.g. Higgs

• ...

Multiple mechanisms at the same time could be possible

Let's see if we observe OvBB!

$$T_{1/2}^{0\nu\beta\beta} \sim 10^{26-27} \text{yr}$$

Possible to see in LHC and determine dominant (short-range) mechanism

Germanium detectors

- e- do not contribute much since they drift through a volume of low field strength
- n+ \rightarrow diffused lithium, p+ \rightarrow ion-implanted boron
- >10⁵ e-h pairs / MeV

L200 detectors

L200- ICPC Planned purchases 28%

L200 - ICPC

Proposed

34%

10%

Gerda - Coax

MJD - PPC 15% Gerda - ICPC

5%

Pulse shape analysis

Pulse shape discrimination

The LEGEND experiment

