Deciphering the solar neutrino flux and properties with Borexino

Gioacchino Ranucci

Istituto Nazionale di Fisica Nucleare Milano August 20, 2021

Formulation of the nuclear hypothesis on how the Sun and stars shine

"If, indeed, the sub-atomic energy in the stars is being freely used to maintain their great furnaces, it seems to bring a little nearer to fulfillment our dream of controlling this latent power for the wellbeing of the human race---or for its suicide" A. Eddington

1938 Von Weizsacker and Bethe \rightarrow independent formulation of the CNO cycle

1938 Bethe \rightarrow Formulation of the *p*-*p* chain and full definition of the nuclear hypothesis

How to prove it?

Hypothesis : there are nuclear reactions occurring in the core summarized as

$$4^{1}H \rightarrow {}^{4}He + 2e^{+} + 2\nu_{e} + energy$$

Can it be proved experimentally?

Yes, neutrinos coming from the reactions are the smoking gun! They pass undisturbed through the solar matter and if detected at Earth they would prove unambiguously the nuclear hypothesis; possibility debated in the context of the discussions about neutrino detection just after the world war II (Pontecorvo '47) From this trigger the Solar Neutrino Saga - a five decades long successful experimental drama culminated with the Borexino results

Where we are today theoretically: SSM Solar neutrinos production and spectrum predictions

CNO cycle Reaction rate $(\times 10^{34} \,\mathrm{s}^{-1})$ 10^{0} 10^{1} 10^{2}

 (p, α)

CNO

cycle

II

 (p, γ)

0.05%

■ ¹⁷O

3+

 (p, γ)

 17 F

 ^{16}O

the remaining $\sim 1\%$?

 $\nu(^{17}\mathrm{F})$

 10^{-1}

 (p, γ)

CNO

cycle

 (p, α)

99.95%

 β^{++ec}

 (p,γ)

 ^{14}N

 ^{15}O

¹⁵N

 $\left(O_{cT} \right)$

(p)

Dominant in massive stars

Controversy about the surface metallicity composition of the Sun: predictions differ up to 28% for the CNO v flux using lower (LZ) or higher Z (HZ) models

Borexino

Timeline from May 2007 up to now – three phases May 07 – August 10 I / December 11 – June 16 II / July 16
 – Feb 20 III – still ongoing for a few weeks – approaching the end of a great story

Summary of the achievements

- ✓ After the latest CNO result achieved the full solar neutrino spectroscopy in a single experiment through the individual real time detection of each v spectral component definite proof of the nuclear hypothesis
- ✓ Unique Validation in the low energy regime of the LMA-MSW v oscillation paradigm through the experimental determination of the P_{ee} electron neutrino survival probability of solar neutrinos

The Borexino detector @ Gran Sasso

Active volume 280 tons of liquid scintillator

Detection principle $v_x + e \rightarrow v_x + e$

Elastic scattering off the electrons of the scintillator threshold at ~ 60 keV (electron energy)

18 m high 20 m diameter

Detection principle

$$v_x + e \rightarrow v_x + e$$

Elastic scattering off the electron of the scintillator threshold at ~ 60 keV (electron energy)

Capabilities of the experiment : (in read tasks already accomplished)

```
<sup>7</sup>Be flux (862 keV),
<sup>8</sup>B with a lower threshold down to 3 MeV, and hep limit pep (1.44 MeV) coupled to a tight limit on CNO,
Geo-antineutrinos (beyond the scope of the talk, see talk of S. Zavatarelli in the yesterday neutrino session) pp neutrinos
Supernovae neutrinos
CNO flux (for details see talk of N. Rossi in the yesterday neutrino session)
```

10

full solar v-spectroscopy in one experiment ! Initial task only ⁷Be

all requiring ultra-low background especially the solar measurements \rightarrow the big challenge of the experiment! \rightarrow turned into an incredible success!!

Results made possible by

- a) Ultra-low background
- b) Thorough calibration of the detector with internal and external sources
- c) A detailed MC able to reproduce accurately the calibration results
- d) High statistics
- e) Threefold coincidence to remove the in-situ cosmogenic ¹¹C
- f) Pulse shape discrimination (property of LS) to cope with α background and a series of effective cuts to remove muons and external background

Extraction of the fluxes through a data-to-model fit *Phase I May 2007 – May 2010 Phase II December 2011 - July 2016 Purification in between and Phase III from July 2016*

	Rad	lio-Isotope	Concentrati	oncentration or Flux Strategy for Red			Final in	May
The	Name	Source	Typical	Required	Hardware	Software	phase I	2010
saga \rightarrow the quest for	μ	cosmic	~ 200 s ⁻¹ m ⁻² @ sea level	<10 ⁻¹⁰ s ⁻¹ m ⁻²	underground water detector	Cerenkov PS analysis	<10 ⁻¹⁰ eff. > 0.99992	
the ultimate	γ	rock			water	fid. vol.	negligible	
purity	γ	PMTs, SSS			buffer	fid. vol.	negligible	
	14C	intrinsic PC	~10 ⁻¹² g/g	~10 ⁻¹⁸ g/g	selection	threshold	2.7 x10 ⁻¹⁸ ¹⁴ C/ ¹² C	
With this purity first	238U 232Th	dust, metallic	10 ⁻⁵ -10 ⁻⁶ g/g	<10 ⁻¹⁶ g/g	distillation, W.E., filtration, mat. selection, cleanliness	tagging, α/β	$5.35 \pm 0.5 \times 10^{-18}$ 3.8 ± 0.8 × 10 ⁻¹⁸ g/g	20 times better than the design value
individual, separate	⁷ Be	cosmogenic	~3 10 ⁻² Bq/t	<10 ⁻⁶ Bq/t	distillation		not seen	
measurements	⁴⁰ K	dust, PPO	~2. 10 ⁻⁶ g/g (dust)	<10 ⁻¹⁸ g/g	distillation, W.E.		not seen	D: 1.010
of ⁷ Be and, pep fluxes,	210 Po	surface cont. from ²²² Rn		<1 c/d/t	distillation, W.E., filtration, cleanliness	fit	May '07: 70 c/d/t Jan '10: ~1 c/d/t	Bismuth-210 41.0±1.5±2.3 c/d/100t
and first low threshold	²²² Rn	emanation from materials, rock	10 Bq/l air, water 100-1000 Bq rock	<10 cpd 100 t	N ₂ stripping cleanliness	tagging, α/β	<1 cpd 100 t	
detection of ⁸ B flux	³⁹ Ar	air, cosmogenic	17 mBq/m ³ (air)	< 1 cpd 100 t	N ₂ stripping	fit	<< ⁸⁵ Kr	
\rightarrow Outcome of phase I	⁸⁵ Kr	air, nuclear weapons	- 1 Bq/m ³ (air)	< 1 cpd 100 t	N ₂ stripping	fit	30 ± 5 cpd/100 t	

Purification between phase I and II

Further achievements based on improved **backgrounds** after the purification

Th< 5.7 10^{-19} g/g 95% C.L. U < 9.4 10^{-20} g/g 95% C.L. Kr< 7.1 cpd/100 tons 95% C.L. Purification (water extraction and nitrogen stripping) astonishingly effective in further reducing the already ultralow background Evaluated through the delayed coincidence tag

Only sizable residual backgrounds:

²¹⁰Po factor 100 less than at the beginning of data taking

²¹⁰Bismuth (**the most relevant**) factor 2 less than in phase I Just after the purification - later ²¹⁰Po further decreased as effect of decay and of the subsequent thermal stabilization which stopped the recontamination from the vessel surface

> Achievement following these data purity improvement →

Nature, Volume 512, Issue 7515, pp. 383-386 (2014)

Nature, Volume 562, Issue 7728, pp. 505-510 (2018)

The measurement of the fundamental pp flux (Nature 2014) and simultaneous high precision low energy spectroscopy of the pp chain (Nature 2018) **Outcome of phase II** Furthermore set the stage for the CNO quest (**phase III**)

Low energy range (0.14-2 MeV) calibration

(*a*) MC tuned on γ source results

Energy scale-Resolution

$$\frac{5\%}{\sqrt{E}}$$
 from 200 keV to 2 MeV

Beyond 2 MeV: γ from n capture on C and H

- (a) Determination of Light yield and of the Birks parameter k_B
 L.Y. → obtained from the γ calibration sources with MC: ~ 500 p.e./MeV
 → left as free parameter in the total fit in the analytical approach
- @ Precision of the energy scale global determination: max deviation 1.5%

(a) Fiducial volume uncertainty: $\left| \begin{array}{c} +0.5 \ _{0.5} \\ -1.3 \end{array} \right|$ (1 σ) (radon sources)

Actual data histogram

The same features noted in the MC spectrum plus the ²¹⁰Po out of equilibrium peak

an ubiquitous isotope in all low background experiments always accompanied by the precursor ²¹⁰Bi

Even at the Borexino very high radiopurity conditions, we still have background events contaminating our solar neutrino signal and we need to apply software cuts to data, in order to remove as much background as possible. Furthermore, we need a powerful tool to separate the signal from the residual background components.

Reduction of the ¹¹C via the threefold coincidence

¹¹C can be tagged and removed exploiting the space and time correlation between the parent muon the spallation neutron(s) and the ¹¹C β^+ decay

Phase II data simultaneous low energy spectroscopy

data-to-model fit

Nature, Volume 562, pp. 505-510 (2018) and Physical Review D, Volume 100, Issue 8, id.082004 (2019)

Summary of the low energy pp chain flux results from the previous fit

	Borexino results cpd/100t	expected HZ cpd/100t	expected LZ cpd/100t
рр	134 ± 10 ⁺⁶ ₋₁₀	131.0 ± 2.4	132.1 ± 2.4
⁷ Be(862+384 KeV)	48.3 ± 1.1 ^{+0.4} _{-0.7}	47.8 ± 2.9	43.7 ± 2.6
pep (HZ)	2.43 ± 0.36 ^{+0.15} _{-0.22}	2.74 ± 0.05	2.78 ± 0.05
pep (LZ)	2.65 ± 0.36 ^{+0.15} -0.24	2.74 ± 0.05	2.78 ± 0.05

	Borexino results Flux (cm ⁻² s ⁻¹)	expected HZ Flux (cm ⁻² s ⁻¹)	expected LZ Flux (cm ⁻² s ⁻¹)		
рр	(6.1 ± 0.5 ^{+0.3} -0.5) 10 ¹⁰	5.98 (1± 0.006) 10 ¹⁰	6.03 (1± 0.005) 10 ¹⁰		
⁷ Be(862+384 KeV)	(4.99 ± 0.13 ^{+0.07} -0.10) 10 ⁹	4.93 (1± 0.06) 10 9	4.50 (1± 0.06) 10 ⁹		
pep (HZ)	(1.27 ± 0.19 ^{+0.08} -0.12) 10 ⁸	1.44 (1± 0.009) 10 ⁸	1.46 (1± 0.009) 10 ⁸		
pep (LZ)	(1.39 ± 0.19 ^{+0.08} -0.13) 10 ⁸	1.44 (1± 0.009) 10 ⁸	1.46 (1± 0.009) 10 ⁸		
		Beginning of the precision era in the study of low energy			

19

solar neutrinos 'Be precision 2.7%

LE and HE Ranges Background subtraction and spectral analysis in two energy ranges PHYSICAL REVIEW D 101, 062001 (2020)

Splitting the sample at 2950 npe (> 5 MeV): no natural radioactivity expected above this threshold

3 MeV electron threshold 5 MeV electron en. boundary between LE and HE

Moreover limit on the hep flux $< 1.8 \times 10^5$ cm⁻² s⁻¹

Completion of the investigation of the pp chain

Systematic Errors and Results

LE	HE	LE+HE
σ	σ	σ
2.0	2.0	2.0
0.5	4.9	1.7
0.7	0.0	0.4
0.05	0.05	0.05
0.5	0.5	0.5
2.2	5.3	2.7
	LE σ 2.0 0.5 0.7 0.05 0.5 2.2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

In addition we have tested:

pdf radial distortion: ±3%

Emanation **vessel shift**: ±1%

- Response functions for the emanation component generated at 6 cm from the vessel (instead of 1 cm)

Binning dependence

None of these potential systematic sources affected the measured 8B rate outside 1 statistical sigma

$$\begin{split} R_{LE} &= & 0.133^{+0.013}_{-0.013}\,(stat)\,^{+0.003}_{-0.003}\,(syst)\,\,\mathrm{cpd}/100\,\mathrm{t}, \\ R_{HE} &= & 0.087^{+0.08}_{-0.010}\,(stat)\,^{+0.005}_{-0.005}\,(syst)\,\,\mathrm{cpd}/100\,\mathrm{t}, \\ R_{LE+HE} &= & 0.220^{+0.015}_{-0.016}\,(stat)\,^{+0.006}_{-0.006}\,(syst)\,\,\mathrm{cpd}/100\,\mathrm{t}. \end{split}$$

Expected rate in the LE+HE range: 0.211± 0.025 cpd/100 t Assuming B16(G98) SSM and MSW+LMA

Equivalent unoscillated flux

	SuperKamiokande	2.345 ±0.014 ±0.036 x 10 ⁶ cm ⁻² s ⁻¹		
	BX 2010	2.4 ±0.4 x10 ⁶ cm ⁻² s ⁻¹	Phase I	
Error halved	This measurement	2.55 ±0.18 ±0.07 x 10 ⁶ cm ⁻² s ⁻¹	Phase II	2(
	G. Ranucci/INFN Milano - Deciphering the	e solar neutrino flux and properties with Borexino		

Closing on the pp chain burning mechanism experimental investigation

The complete spectroscopy from **pp to** ⁸**B** represents the first and unique full determination of the pp cycle \rightarrow **final crowing of the experimental quest for the burning mechanism fueling the Sun!**

Natu	re, Volume 562, pp. 505-51	10 (2018)	$R = 0.18 \pm 0.02$		Borexino cor the experime mechanism	npletes and clo ntal quest of th nowering the S	ses e pp
	John Bahcall	N.4					
	long advocated by		Raio(IIC+IIC)		$\Phi(pp) \Phi(Dc)$	$R = 0.161 \pm 0.010$	LZ
	of the pp solar fusion	R =	$\frac{Rate(^{3}He+^{4}He)}{Rate(^{3}He+^{4}He)}$ R =	=	$\overline{\Phi(nn)} - \Phi(^7Re)$	$R = 0.180 \pm 0.011$	ΗZ
	Quantitative probe	_	$Rate(^{3}He+^{3}He)$		$2 \Phi(^7Be)$	EXPECTED Values: (C. Pena G	aray, private comm,

Moreover, using Borexino results we can calculate the neutrino solar luminosity which is found to be well in agreement with the measured photon luminosity

[•]Further confirmation of the nuclear origin of the solar power. It proves that the Sun has been in thermodynamic equilibrium over the last 10⁵ years, the time required for radiation to flow from the center to the surface of the Sun

. . .

The global oscillation picture: survival probability of the electron neutrinos contrasted with the improved Borexino results of phase II

Borexino Coll., Phys. Lett. B707 (2012) 22.

FROM BOREXINO ALONE VALIDATION OF THE LMA-MSW OSCILLATION SOLUTION OVER THE FULL SOLAR NEUTRINO SPECTRUM

Reinforced by the improved precision of the phase II data

⁷Be 2.7%

Simultaneous low energy spectroscopy

neutrinos consistent with 0

in agreement with the LMA-

"Although historically by measuring Δm_{21}^2 KamLAND has uniquely selected the LMA solution, now the solar neutrino experiments alone can do this due to new measurements by Borexino, which validated the solution at low energies, and due to higher accuracy of other results." M. Maltoni and A.Yu. Smirnov

EPJA 52, 87 2016

G. Ranucci/INFN Milano - Deciphering the solar neutrino flux and properties with Borexino

MSW expectation

The next and last step of the Borexino journey throughout the nuclear reactions powering the SUN : detection of solar neutrinos from the CNO cycle Phase III data July '16 – Feb '20

Main issue: ²¹⁰Bi background indistinguishable from the CNO spectrum ²¹⁰Bi/CNO degeneracy Handle: ²¹⁰Bi determination via intrinsic (in the LS) ²¹⁰Po successor Requirement: stop of the extra ²¹⁰Po from the surface of the vessel due to convective motions of the scintillator Action on the detector: thermal stabilization to maintain the liquid as still as possible - **very challenging task**

Multiple approaches to monitor, understand, and suppress the temperature variations

- Double layer of mineral wool (thermal conductivity down to 0.03 W/m/K) & Active Gradient Stabilization System (2014-2016)
- Temperature Probes (2014-2015)

V. di Marcello et al., NIM A 964, id. 163801

- Fluid dynamical simulations
- Hall C Temperature Stabilization (2019)

Enduring effort over the past seven years

G. Ranucci/INFN Milano - Deciphering the solar neutrino flux and properties with Borexino

Temperature evolution from the probes

Probes resolution 0.07 °C

A 2D detailed view - Polonium data spatial mapping vs. time

Convective condition before insulation differ insulation

Stabilization measures were very effective at reducing the ²¹⁰Po motion

- 1. Beginning of the Insulation Program
- 2. Turning off the water recirculation system in the Water Tank
- 3. Start of the active temperature control system operations
- 4. Change of the active control set points
- 5. Installation and commissioning of the
- Hall C temperature control system.

Both methods agree within systematics:

$R_{min}(cpd/100t)$	σ_{fit}	σ_{mass}	$\sigma_{binning}$	σ ²¹⁰ Bi homog.	σ_eta leak	$\sigma_{ extsf{Total}}$
11.5	0.88	0.36	0.31	See next slides	0.30	See next slides

²¹⁰Po and ²¹⁰Bi final numerical assessment

²¹⁰Pb
$$\xrightarrow[(23y)]{\beta^{-}}$$
 ²¹⁰Bi $\xrightarrow[(5d)]{\beta^{-}}$ ²¹⁰Po $\xrightarrow[(138d)]{\alpha}$ ²⁰⁶Pb (stable) Basis of the approach

²¹⁰Po rate inferred from the Low Polonium Field with all errors

$R_{min}(cpd/100t)$	σ_{fit}	σ_{mass}	$\sigma_{binning}$	$\sigma_{}_{}^{}$ 210Bi homog.	σ_eta leak	$\sigma_{ extsf{Total}}$
11.5	0.88	0.36	0.31	0.78	0.30	1.3

The ²¹⁰Po evaluated rate still possibly contaminated with residual ²¹⁰Po from the vessel surface \rightarrow upper limit to the rate of ²¹⁰Bi

Sought constraint essential to break the ²¹⁰Bi/CNO degeneracy → Outcome of the relentless years-long effort to stabilize the detector and understand the ²¹⁰Po behavior in the Inner Vessel

R(²¹⁰Bi) ≤ 11.5 ± 1.3 cpd/100t

CNO-v analysis: Phase-III MV fit

Systematic sources and final CNO-v result

Significance of CNO-v detection

Likelihood ratio test

Determination of the q_0 discovery test statistic from the likelihood with and without the CNO signal

G. Cowan et al., Eur. Phys. J. C, 71:1554,20

Conclusions

The long journey of Borexino to decipher the mysteries of the neutrinos from the Sun has produced the following enduring scientific legacies

- ✓ Full solar neutrino spectroscopy in only one experiment which has enabled
 - Complete investigation the main **pp** fueling mechanism of the Sun
 - first detection ever of the CNO neutrinos with 5 σ significance which confirms the existence of this energy generating cycle dominant in the more massive stars
- ✓ Validation at of the MSW-LMA v oscillation solution by Borexino alone over the entire solar neutrino spectrum

With these outcomes Borexino has accomplished its mission by completely unraveling the two processes powering the Sun and the stars

the pp Chain and the CNO Cycle