

Non-Standard Interactions in Radiative Neutrino Mass Models

Sudip Jana Max-Planck-Institut für Kernphysik

Lomonosov Conference 2021 (Online) Moscow State University, Russia

Based on:

1. arXiv: 1907.09498 [hep-ph], JHEP 03 (2020) 006, in collaboration with K.S. Babu, B. Dev, A. Thapa

2. arXiv: 1908.02779 [hep-ph], Phys. Rev. Lett. 124 (2020) 4, 041805, in collaboration with K.S. Babu, B. Dev, Y. Sui

3. arXiv: 2007.04291 [hep-ph], JHEP 10 (2020) 040, in collaboration with K.S. Babu, Manfred Lindner

Outline

Neutrino Oscillations: Harbinger of New Physics

Neutrino flavor oscillations have been firmly established from:

Neutrino mass generation

 Technically natural" in t'Hooft sense. Small values are protected by symmetry. At a cut-off scale Λ:
 "natural" - δm_f ~ g²/(16π²) m_fln(Λ²/m_f²)
 "unnatural" - δm_H²~ - y_t²/(8π²) Λ²

Two ways to generate small values naturally:

- Suppression by integrating out heavy states : the higher dimension $1/\Lambda^n$, the lower Λ can be.
- Suppression by loop radiative generation: the higher loops $1/(16\pi^2)^n$, the lower cut off scale can be.

• Lowest higher dim. operator $\mathcal{O}^{d=5}$: $\mathcal{L}_{d=5} = \frac{1}{\Lambda_{NP}} LLHH$

- Realization of Weinberg op. -
 - ► See-saw: there are many seesaw realizations -
 - Type-I Minkowski (77), Ramond, Slansky (79), Yanagida (79), Glashow (79), Mohapatra, Senjanovic (80)
 - * Type-II Schechter, Valle (80), Lazarides, Shafi, Wetterich (81), Mohapatra, Senjanovic (81)
 - * Type-III Foot, Lew, He, Joshi (89), Ma (98)
 - * Linear, Inverse, etc ...
 - ► Loop-induced:
 - * 1-loop Zee (80), Ma (99)
 - * 2-loop Babu (88)

Radiative neutrino mass generation

- Neutrino masses are zero at tree level as SM: ν_R may be absent.
- Small, finite Majorana masses are generated at the quantum level.
- Typically new heavy scalar fields introduced violates lepton number, gives rise to neutrino flavor transitions, and lepton flavor violation.
- Simple realization is the Zee Model, which has a second Higgs doublet and a charged singlet.

- Smallness of neutrino mass is explained via loop and chiral suppression.
- New physics in this framework may lie at the TeV scale.

Type-I Radiative Mechanism

- Obtained from effective d = 7, 9, 11... operators with $\Delta L = 2$ selection rule
- If the loop diagram has at least one Standard Model particle, this can be cut to generate such effective operators

Classification: Babu, Leung (2001), de Gouvea, Jenkins (2008) Volkas et al. (2017)

 $\mathcal{O}_8 = L_i \bar{e^c} \bar{u^c} d^c H_j \epsilon^{ij}$ Babu, Julio (2010)

Type-II Radiative Mechanism

- No Standard Model particles inside loop
- Cannot be cut to generate d = 7, 9, ... operators
- Scotogenic model is an example

- Neutrino mass has no chiral suppression; new scale can be large
- Other considerations (dark matter) require TeV scale new physics
 Ma (2006)
- These models predict negligible NSI

Neutrino Standard Interaction

Charged current and Neutral current

 Coherent forward scattering of ν_e off electron in matter generates a matter potential:

 $V = \sqrt{2}G_F N_e \approx 8.2 \times 10^{-12} \text{ eV}$ in solar core

Modifies refractive index of v_e

(Mikheyev-Smirnov)

(Wolfenstein)

Neutral current interaction is universal

Neutrino NSI

NSI in radiative neutrino mass models

An alternative to high scale seesaw for neutrino mass generation is "radiative mechanism" Small, finite Majorana masses are generated at the quantum level. \mathcal{V}_{i} Neutrino mass The charged scalars induce NSI at tree level Smallness of neutrino mass is explained via loop and chiral suppression. Simple realization is the Zee Model, which has a second Higgs doublet and a charged singlet. d^c_{σ} $\ell_{\sigma R}$ We have systematically analyzed these models for their predicted NSI. NSI in radiative models

Zee model

- Gauge symmetry is same as Standard Model
- Zee Model has a second Higgs doublet H_2 and a charged weak singlet η^+ scalars

$$H_{1} = \begin{pmatrix} G^{+} \\ \frac{1}{\sqrt{2}}(\mathbf{v} + H_{1}^{0} + iG^{0}) \end{pmatrix}, \qquad H_{2} = \begin{pmatrix} H_{2}^{+} \\ \frac{1}{\sqrt{2}}(H_{2}^{0} + iA) \end{pmatrix}$$

• The Yukawa lagrangian reads:

$$\mathcal{L}_{Y} = f^{ab}(\psi^{i}_{aL} C \psi^{j}_{bL}) \epsilon_{ij} \eta^{+} + \overline{\psi}_{L} \tilde{Y} H_{1} e_{R} + \overline{\psi}_{L} Y H_{2} e_{R} + h.c.$$
$$V = \mu H^{i}_{1} H^{j}_{2} \eta^{-} + h.c. + \dots$$

• Mixing between η^+ and H_2^+ :

$$\begin{pmatrix} M_2^2 & -\mu v/\sqrt{2} \\ -\mu v/\sqrt{2} & M_3^2 \end{pmatrix}, \qquad \sin 2\varphi = \frac{\sqrt{2}v\mu}{m_{H^+}^2 - m_{h^+}^2}$$

where
$$h^+ = \cos \varphi \eta^+ + \sin \varphi H_2^+$$
$$H^+ = -\sin \varphi \eta^+ + \cos \varphi H_2^+$$

NSI in Zee model

• Yukawa coupling matrices:

$$f = \begin{pmatrix} 0 & f_{e\mu} & f_{e\tau} \\ -f_{e\mu} & 0 & f_{\mu\tau} \\ -f_{e\tau} & -f_{\mu\tau} & 0 \end{pmatrix}, \qquad Y = \begin{pmatrix} Y_{ee} & Y_{e\mu} & Y_{e\tau} \\ Y_{\mu e} & Y_{\mu\mu} & Y_{\mu\tau} \\ Y_{\tau e} & Y_{\tau\mu} & Y_{\tau\tau} \end{pmatrix}$$

• Neutrino mass

$$M_{\nu} = \kappa \left(f M_l Y^T + Y M_l f^T \right)$$

$$\kappa = \frac{1}{16\pi^2} \sin 2\varphi \log \frac{m_{h^+}^2}{m_{H^+}^2}$$

• If $Y \propto M_l$, which happens with a Z_2 , then model is ruled out Wolfenstein (1980)

- In general, Y is not proportional to M_l , and the model gives reasonable fit to oscillation data
- NSI arises via the exchange of h^{\pm} and H^{\pm}

NSI in Zee model

• The singly-charged scalars η^+ and H^+ induce NSI at tree level:

$$\varepsilon_{\alpha\beta} \equiv \varepsilon_{\alpha\beta}^{(h^+)} + \varepsilon_{\alpha\beta}^{(H^+)} = \frac{1}{4\sqrt{2}G_F} Y_{\alpha e} Y_{\beta e}^{\star} \left(\frac{\sin^2 \varphi}{m_{h^+}^2} + \frac{\cos^2 \varphi}{m_{H^+}^2} \right)$$

NSI in Zee model

- $\bullet\,$ Electroweak $\,{\cal T}\,$ parameter sets limits on mixing $\sin\varphi$
- $\mu \rightarrow {\it e} + \gamma$ type processes limit products of couplings
- $\mu \rightarrow 3e$ type processes lead to further constraints
- $\bullet \ \tau$ lifetime and universality constraints
- Lepton universality in W^{\pm} decays
- Theoretical constraint from avoiding charge breaking minima
- LEP direct search limits on charged scalars
- Constraints from LHC searches
- Higgs precision physics limits

• The singly-charged scalars η^+ and H^+ induce NSI at tree level:

$$\varepsilon_{\alpha\beta} \equiv \varepsilon_{\alpha\beta}^{(h^+)} + \varepsilon_{\alpha\beta}^{(H^+)} = \frac{1}{4\sqrt{2}G_F}Y_{\alpha e}Y_{\beta e}^{\star}\left(\frac{\sin^2\varphi}{m_{h^+}^2} + \frac{\cos^2\varphi}{m_{H^+}^2}\right)$$

• For a benchmark value of 100 GeV masses, we have:

 $\varepsilon_{ee}^{\max} \approx 3.5\%$, $\varepsilon_{\mu\mu}^{\max} \approx 5.6\%$, $\varepsilon_{\tau\tau}^{\max} \approx 71.6\%$ Babu, Dev, SJ, Thapa (2019)

Charged lepton flavor violation

- Detection of LFV signals \implies clear evidence for BSM
- $\ell_i \rightarrow \ell_j \gamma$ arises at one loop level

Process	Exp. bound	Constraint
$\mu ightarrow e \gamma$	BR < 4.2×10^{-13}	$ Y_{\mu e}^{\star}Y_{ee} < 1.05 \times 10^{-3} \left(\frac{m_H}{700 \text{ GeV}}\right)^2$
$ au ightarrow e \gamma$	BR < 3.3×10^{-8}	$ Y_{\tau e}^{\star}Y_{ee} < 0.69 \left(rac{m_{H}}{700 \ { m GeV}} ight)^{2}$
$ au o \mu \gamma$	BR < 4.4×10^{-8}	$ Y_{\tau e}^{\star} Y_{\mu e} < 0.79 \left(\frac{m_H}{700 { m GeV}} ight)^2$

Charged lepton flavor violation

• The presence of the second Higgs doublet gives rise to tree-level trilepton decays $\ell_i \rightarrow \ell_j \ell_k \ell_l$

Process	Exp. bound	Constraint
$\mu^- \to e^+ e^- e^-$	BR < 1.0×10^{-12}	$ Y_{\mu e}^{\star}Y_{ee} < 3.28 \times 10^{-5} \left(\frac{m_H}{700 \text{ GeV}}\right)^2$
$ au^- ightarrow e^+ e^- e^-$	BR < 1.4×10^{-8}	$ Y_{\tau e}^{\star}Y_{ee} < 9.05 \times 10^{-3} \left(\frac{m_H}{700 \text{ GeV}}\right)^2$
$ au^- ightarrow e^+ e^- \mu^-$	BR < 1.1×10^{-8}	$ Y_{\tau e}^{\star}Y_{\mu e} < 5.68 \times 10^{-3} \left(\frac{m_H}{700 \text{ GeV}}\right)^2$

• Trilepton decays put more stringent bounds compared to the bounds from loop-level $\ell_{\alpha} \rightarrow \ell_{\beta} \gamma$ decays.

- At LEP experiment, e^+e^- collision above the Z boson mass imposes significant constraints on contact interactions involving e^+e^- and fermion pair.
- An effective Lagrangian has the form:

$$\mathcal{L}_{eff} = \frac{4\pi}{\Lambda^2 (1+\delta_{ef})} \sum_{i,j=L,R} \eta^f_{ij} (\bar{e}_i \gamma^\mu e_i) (\bar{f}_j \gamma_\mu f_j)$$

• In Zee model, the exchange of neutral scalars H & A from second doublet will affect $e^+e^- \rightarrow \ell_{\alpha}^+ \ell_{\beta}^-$

Process	LEP bound	Constraint
$e^+e^- ightarrow e^+e^-$	$\Lambda^{LR/RL} > 10 \text{ TeV}$	$\frac{m_H}{ Y_{ee} } > 1.99 \text{ TeV}$
$e^+e^- ightarrow \mu^+\mu^-$	$\Lambda^{LR/RL} > 7.9~{ m TeV}$	$\frac{ m_{H}^{0} }{ Y_{\mu e} } > 1.58 \text{ TeV}$
$e^+e^- ightarrow \tau^+ \tau^-$	$\Lambda^{LR/RL} > 2.2 \text{ TeV}$	$\frac{m_H}{ Y_{\tau e} } > 0.44 \text{ TeV}$

- New Physics at sub-TeV scale is highly constrained from direct searches as well as indirect searches.
- Direct searches: we can put bound on h^+ mass by looking at the final state (leptons + missing energy)
 - Some supersymmetirc searches (Stau, Selectron) exactly mimics the charged higgs searches.

Dominant production in LEP

Dominant production in LHC

• $BR_{\tau\nu} + BR_{e\nu} = 1$ ($BR_{\mu\nu} \approx 0$) to avoid stringent limit from muon decay.

• The lowest charged higgs mass allowed is 110 GeV.

• $Y_{ee} \sin \varphi = 0 \Rightarrow \text{no } h^+ \text{ production with } W \text{ boson } \Rightarrow$

Babu, Dev, SJ, Thapa (2019)

• The lowest charged higgs mass allowed is 96 GeV.

Constraints from Higgs observables

Light charged scalar is leptophilic ⇒ production rate not affected
 New contribution to loop-induced h → γγ

EW precision constraints

- T parameter imposes the most stringent constraint
- No mixing between the neutral \mathcal{CP} -even scalars h and H

• For $m_H = 0.7$ TeV and $m_h^+ = 100$ GeV, the maximum mixing is 0.63.

Charge breaking minima

• To have sizable NSI \Rightarrow large mixing $\varphi \Rightarrow$ large $\mu (\mu \epsilon_{ij} H_1^j H_2^j \eta^-)$

• Max. value of μ is found to be 4.1 times the heavier mass m_{H^+}

NSI in Zee model

SUDIP JANA | MPIK

Consistency with neutrino oscillation data

Oscillation	3σ allowed range	Model prediction				
parameters	from NuFit4	BP I (IH)	BP II (IH)	BP III (NH)		
$\Delta m_{21}^2 (10^{-5} \text{ eV}^2)$	6.79 - 8.01	7.388	7.392	7.390		
$\Delta m_{23}^2 (10^{-3} \text{ eV}^2) (\text{IH})$	2.412 - 2.611	2.541	2.488	-		
$\Delta m_{31}^2 (10^{-3} \text{ eV}^2) (\text{NH})$	2.427 - 2.625	-	-	2.505		
$\sin^2 \theta_{12}$	0.275 - 0.350	0.295	0.334	0.316		
$\sin^2 \theta_{23}$ (IH)	0.423 - 0.629	0.614	0.467	-		
$\sin^2 \theta_{23}$ (NH)	0.418 - 0.627	-	-	0.577		
$\sin^2 \theta_{13}$ (IH)	0.02068 - 0.02463	0.0219	0.0232	-		
$\sin^2 \theta_{13}(\text{NH})$	0.02045 - 0.02439	-	-	0.0229		

SUDIP JANA | MPIK

Zee-Burst: A new test of NSI at IceCube

- Ultra High Energy neutrinos at IceCube can probe NSI in the Zee model
- $\overline{\nu_e} + e^- \rightarrow W^- \rightarrow \text{anything has a resonant enhancement at}$ $E_{\nu} = \frac{m_W^2}{2m_e} = 6.3 \,\text{PeV}$ Glashow resonance
- Since h^{\pm} and H^{\pm} in Zee model are allowed to be as light as 100 GeV, $\overline{\nu}_{\alpha} + e^{-} \rightarrow h^{-} \rightarrow$ anything is resonantly enhanced $E_{\nu} = \frac{m_{h}^{2}}{2m_{e}} \simeq 9.3 \,\text{PeV}$ "Zee burst"
- We have analyzed this possibility of "Zee burst"

Babu, Dev, SJ, Sui (PRL' 2019)

NSI in Zee-Babu model

- Two $SU(2)_L$ singlet Higgs fields, h^+ and k^{++} are introduced
- The corresponding Lagrangina reads:

$$\mathcal{L} = \mathcal{L}_{SM} + f_{ab} \overline{\Psi_{aL}^C} \Psi_{bL} h^+ + h_{ab} \overline{l_{aR}^C} l_{bR} k^{++} - \mu h^- h^- k^{++} + h.c. + V_H$$

• Majorana neutrino masses are generated by 2-loop diagram:

NSI in Zee-Babu model

The heavy singly charged scalar induces nonstandard neutrino interactions:

T. Ohlsson et al. (2009)

NSI in KNT model

• Singlet fermion N and two singlet scalars η_1^+ and η_2^+ are introduced

$$\mathcal{L}_{Y} = f L L \eta_{1}^{+} + g e^{c} N \eta_{2}^{-} + \frac{1}{2} M_{N} N N$$

- η_2^+ and N are odd under Z_2
- Majorana neutrino masses are generated via 3-loop diagram

• Only NSI is from η_1^+

NSI in 1-loop LQ (colored-Zee) model

• Two $SU(3)_C$ scalar fields, $\Omega \sim (3, 2, 1/6)$ and $\chi^{-1/3} \sim (3, 1, -1/3)$, are • Neutrino masses: introduced

/3

$$\Omega = \begin{pmatrix} \omega^{2/3} \\ \omega^{-1/3} \end{pmatrix} \qquad \qquad \chi^{-1}$$

- The Yukawa lagrangian reads:
- $\mathcal{L}_Y = y_{ij} L_i d_j^c \Omega + y_{ij}' L_i Q_j \chi^* + h.c.$ $V = \mu \Omega \chi^* H^{\dagger} + h.c.$ • Mixing between $\omega^{-1/3}$ and $\chi^{-1/3}$: (12)

$$\begin{pmatrix} M_{\omega}^{2} & \mu v \\ \mu v & M_{\chi}^{-1/3} \end{pmatrix}$$

NSI in 2-loop LQ model

Same as before as it assumes Ω ~ (3, 2, 1/6) and χ^{-1/3}~ (3, 1, -1/3)
χ^{-1/3} coupling is modified

$$\mathcal{L}_{y} = Y_{ij}L_{i}d_{j}^{c}\Omega + F_{ij}e_{i}^{c}u_{j}^{c}\chi^{-1/3} + h.c.$$

- Note F_{ij} do not lead to NSI.
- M_{ν} arises at 2-loops: Replace leptons by quarks in Zee-Babu Model

NSI in 3-loop LQ model

• Replace leptons by quarks

$$\mathcal{L}_{y} = fLQ\chi_{1}^{*1/3} + d^{c}N\chi_{2}^{-1/3} + \frac{1}{2}M_{N}NN$$

• $\chi_1^{-1/3}$ cause NSI.

Collider constraints on leptoquarks

Feynman diagrams for pair- and single-production of LQ at the LHC:

LQ

LO

LQ

g g

Collider constraints on leptoquarks

Other constraints on leptoquarks

- Constraints on Yukawa $y_{\alpha i}$
 - $\mu \to e\gamma$: No significant constraints due to cancellations. This suppresses amplitude by $\frac{m_b^2}{m_\omega^2} << 1$
 - $\mu \rightarrow 3e$ $|y_{13}y_{23}| < 7.6 \times 10^{-3}$ $M_{\omega} = 1TeV$
 - μe conversion

 $|y_{11}y_{21}| < 3.3 \times 10^{-7}$

$$M_{\omega} = 1 TeV$$

•
$$\tau^- \to e^- \eta$$
 and $\tau^- \to \mu^- \eta$

$$|y_{12}y_{32}| < 1.2 \times 10^{-2} (\frac{M_{\omega}}{300 GeV})^2$$
 $|y_{22}y_{32}| < 1.0 \times 10^{-2} (\frac{M_{\omega}}{300 GeV})^2$

• Atomic Parity Violation constraints:

$$y_{11} < 0.03 \frac{M_{\omega}^{2/3}}{100 GeV}$$
 $y_{11}' < 0.03 \frac{M_{\chi}}{100 GeV}$

• ϵ_{ee} , $\epsilon_{e\mu}$, and $\epsilon_{e\tau}$ cannot be too large as one y_{e1} factor is order 0.3 for 1 TeV Leptoquark mass

> $\varepsilon_{ee} \approx 0.33\%$ $\varepsilon_{e\mu} = 10^{-7}\%$ $\varepsilon_{e\tau} = 0.36\%$ $\varepsilon_{\mu\mu} = 21.6\%$ $\varepsilon_{\mu\tau} \approx 0.43\%$ $\varepsilon_{\tau\tau} \approx 34.3\%$

NSI via leptoquarks in radiative models

Summary of NSI in radiative models

Summary of NSI in radiative models

Term	O	Model	Loop	8/	New porticles		Max NSI @ tree-level				
	Model	level	\mathcal{F}	New particles	Eee	$ \varepsilon_{\mu\mu} $	$ \varepsilon_{\tau\tau} $	$ \varepsilon_{e\mu} $	$ \varepsilon_{e\tau} $	$ \varepsilon_{\mu\tau} $	
$L\ell^c \Phi^*$	O_2^2	Zee [14]	1	S	$\eta^+(1,1,1),\Phi_2(1,2,1/2)$	0.08	0.038	0.093	$O(10^{-5})$	0.0056	0.0034
	\mathcal{O}_9	Zee-Babu [15, 16]	2	S	$h^+(1, 1, 1), k^{++}(1, 1, 2)$						
	\mathcal{O}_9	KNT [36]	3	S	$\eta_1^+(1,1,1),\eta_2^+(1,1,1)$						
				F	N(1, 1, 0)	0	0.0009	0.003	0	0	0.003
$LL\eta$	\mathcal{O}_9	1S-1S-1F [55]	3	S	$\eta_1(1, 1, 1), \eta_2(1, 1, 3)$						
				F	F(1, 1, 2)						
	\mathcal{O}_2^1	1S-2VLL [31]	1	S	$\eta(1,1,1)$						
				F	$\Psi(1,2,-3/2)$						
	\mathcal{O}'_3	AKS [38]	3	S	$\Phi_2(1,2,1/2),\eta^+(1,1,1),\eta^0(1,1,0)$	$O(10^{-10})$	$O(10^{-10})$	$O(10^{-10})$	$O(10^{-10})$	$O(10^{-10})$	$O(10^{-10})$
$L\ell^c \phi^\star$				\mathcal{F}	N(1, 1, 0)						
—	$\mathcal{O}_{d=15}$	Cocktail [39]	3	S	$\eta^+(1,1,1), k^{++}(1,1,2), \Phi_2(1,2,1/2)$	0	0	0	0	0	0
W/Z	\mathcal{O}_2'	MRIS [43]	1	\mathcal{F}	N(1, 1, 0), S(1, 1, 0)	0.0013	$O(10^{-4})$	0.0028	$O(10^{-5})$	$\mathcal{O}(10^{-4})$	0.0012
$L\Omega d^{c}$	\mathcal{O}_3^8	LQ variant of Zee [30]	1	S	$\Omega({f 3},{f 2},1/6),\chi({f 3},{f 1},-1/3)$	0.004	0.216	0.343	$O(10^{-7})$	0.0036	0.0043
$(LQ\chi^{\star})$	\mathcal{O}_8^4	2LQ-1LQ [33]	2	S	$\Omega({f 3},{f 2},1/6),\chi({f 3},{f 1},-1/3)$	(0.0069)	(0.0086)				
	\mathcal{O}_3^3	2LQ-1VLQ [34]	2	S	$\Omega({f 3},{f 2},1/6)$						
				\mathcal{F}	$U({f 3},{f 1},2/3)$						
$L\Omega d^c$	\mathcal{O}_3^6	2LQ-3VLQ [31]	1	S	$\Omega({f 3},{f 2},1/6)$						
				\mathcal{F}	$\Sigma(3,3,2/3)$	0.004	0.093	0.093	$O(10^{-7})$	0.0036	0.0043
	\mathcal{O}_8^2	2LQ-2VLL [31]	2	S	$\Omega({f 3},{f 2},1/6)$						
				\mathcal{F}	$\psi(1,2,-1/2)$						
	\mathcal{O}_8^3	2LQ-2VLQ [31]	2	S	$\Omega({f 3},{f 2},1/6)$						
				\mathcal{F}	$\xi(3, 2, 7/6)$						
$L\Omega d^{c}$	\mathcal{O}_3^9	Triplet-Doublet LQ [31]	1	S	$ ho({f 3},{f 3},-1/3),\ \Omega({f 3},{f 2},1/6)$	0.0059	0.0249	0.517	$O(10^{-8})$	0.0050	0.0038
$(LQ\bar{ ho})$											
	\mathcal{O}_{11}	LQ/DQ variant Zee-Babu [32]	2	S	$\chi(3,1,-1/3)\;,\Delta(6,1,-2/3)$						
	\mathcal{O}_{11}	Angelic [35]	2	S	$\chi(3,1,1/3)$						
				\mathcal{F}	$F({f 8},{f 1},0)$						
$LQ\chi^{\star}$	\mathcal{O}_{11}	LQ variant of KNT [37]	3	S	$\chi(3,1,-1/3),\ \chi_{2}(3,1,-1/3)$	0.0069	0.0086	0.093	$O(10^{-7})$	0.0036	0.0043
				\mathcal{F}	N(1, 1, 0)						
	\mathcal{O}_3^4	1LQ-2VLQ [31]	1	S	$\chi(3,1,-1/3)$						
				\mathcal{F}	$\mathcal{Q}(3,2,-5/6)$						
$Lu^c\delta$	$\tilde{\mathcal{O}}_1$	3LQ-2LQ-1LQ (New)	1	S	$\bar{ ho}(\bar{3},3,1/3),\ \delta(3,2,7/6),\ \xi(3,1,2/3)$	0.004	0.216	0.343	$O(10^{-7})$	0.0036	0.0043
$(LQ\bar{\rho})$						(0.0059)	(0.007)	(0.517)		(0.005)	(0.0038)
$Lu^c\delta$	$\mathcal{O}_{d=13}$	3LQ-2LQ-2LQ(New)	2	S	$\delta(3,2,7/6), \Omega(3,2,1/6), \hat{\Delta}(\mathbf{6^*},3,-1/3)$	0.004	0.216	0.343	$O(10^{-7})$	0.0036	0.0043
$LQ\bar{\rho}$	\mathcal{O}_3^5	3LQ-2VLQ [31]	1	S	$ar ho(ar{f 3},{f 3},-1/3)$						
				\mathcal{F}	$\mathcal{Q}(3,2,-5/6)$	0.0059	0.0007	0.517	$O(10^{-7})$	0.005	0.0038
	All Type-II Radiative models			0	0	0	0	0	0		

Conclusion

- Matter NSI in the radiative mass models has been studied.
- Mass as low as 96 GeV for the charged scalar is shown to be consistent with direct and indirect limits from LEP and LHC.
- Diagonal NSI in Zee Model are allowed to be as large as (8 %, 3.8 %, 9.3 %) for (ε_{ee}, ε_{μμ}, ε_{ττ}), while off-diagonal NSIs are allowed to be (-, 0.56 %, 0.34 %) for (ε_{eμ}, ε_{eτ}, ε_{μτ}).
- NSI in leptoquark models are studied which allows diagonal NSI $\varepsilon_{\tau\tau}$ as large as 34.3%
- Radiative neutrino mass model allows parameters which are in good agreement with the neutrino oscillation experiments

SUDIP JANA | MPIK