
Based on: 

1. arXiv: 1907.09498 [hep-ph], JHEP 03 (2020) 006 , in collaboration with K.S. Babu, B. Dev, A. Thapa

2. arXiv: 1908.02779 [hep-ph], Phys.Rev.Lett. 124 (2020) 4, 041805, in collaboration with K.S. Babu, B. Dev, Y. Sui

3. arXiv: 2007.04291 [hep-ph], JHEP 10 (2020) 040, in collaboration with K.S. Babu, Manfred Lindner



Outline

• Neutrino magnetic and 
electric dipole moments, 
charge-radius

Theory of 
radiative 

neutrino mass 
mechanism

Probe of 
neutrino mass 

messenger

Investigation 
of neutrino 
interactions 
with matter

Understanding 
neutrino 

properties

SUDIP JANA | MPIK 2



Neutrino Oscillations: Harbinger of New Physics

Neutrino flavor oscillations have been firmly established from:

• Solar neutrinos (Homestake, SAGE, GALLEX, Kamiokande, Super-
Kamiokande, SNO, Borexino,…)

• Atmospheric neutrinos (Super-Kamiokande, IceCube,…)

• Reactor neutrinos (KamLand, DayaBay, RENO, DoubleChooz …)

• Accelerator neutrinos (T2K, MINOS, NOVA…)

Oscillations can happen only if neutrinos have non-zero masses

• 𝝂𝜶 =  𝒊=𝟏
𝟑 𝑼𝜶𝒊𝝂𝒊,         α = (e, µ, τ)

• U is assumed to be unitary (Needs experimental check!)

“Majorana phases” (α, β) do not affect the oscillation probabilities, while the 
single “Dirac phase” δ does

CP phase δ is unknown 

• Recent T2K result (Nature, 2020): δ = −𝟏. 𝟖𝟗−𝟎.𝟓𝟖
+𝟎.𝟕𝟎

All three mixing angles and two mass splitting have been measured with few 
percent precision

There is a mass ordering ambiguity, normal ordering vs. inverted ordering 
(Sign of Δm2

32 is currently unknown)

Unitarity of UPMNS remains to be tested
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Neutrino mass generation

 “Technically natural” in t’Hooft sense. 

Small values areprotected by symmetry.  At a 

cut-off scale Λ:

“natural” -𝛅mf ~ g2/(16𝛑2) mf ln(Λ2/mf
2) 

“unnatural” -𝛅mH
2 ~ - yt

2/(8𝛑2) Λ2

Two ways to generate small values

naturally:

 Suppression by integrating out heavy states:

the higher dimension 1/Λn, the lower Λ can be.

 Suppression by loop radiative generation:

the higher loops 1/(16𝛑2)n, the lower cut off scale 

can  be.
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Radiative neutrino mass generation 



Type-I Radiative Mechanism

Classification: Babu, Leung (2001),

de Gouvea, Jenkins (2008)

Volkas et al. (2017)
Babu, Dev, SJ, Thapa (2019)



Type-II Radiative Mechanism



Neutrino Standard Interaction

(Wolfenstein)

(Mikheyev-Smirnov)
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Neutrino NSI

Unknown couplings involving neutrinos.

Potentially observable effects in neutrino oscillation 
experiments. It can affect mass ordering and CP violation. 

NSI effects happen in the neutrino production, propagation 
through matter,  and the detection processes.

Most important effect of NSI is in neutrino propagation in 
matter                                                           Wolfenstein (1978)

There have been a variety of phenomenological studies of NSI 
in the context of oscillations, but relatively lesser effort has 
gone into the UV completion of models that yield such NSI.

A major challenge in generating sizable NSI: charged lepton 
flavor violation 
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NSI in radiative neutrino mass models 

An alternative to high scale seesaw for neutrino mass 
generation is “radiative mechanism”

Small, finite Majorana masses are generated at the 
quantum level.

The charged scalars induce NSI at tree level

Smallness of neutrino mass is explained via loop and 
chiral suppression.

Simple realization is the Zee Model, which has a second 
Higgs doublet  and a charged singlet.

We have systematically analyzed these models for their 
predicted NSI.

Neutrino mass 

NSI in radiative models 
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Zee model
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NSI in Zee model 
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NSI in Zee model 

Babu, Dev, SJ, Thapa (2019)
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NSI in Zee model 

Babu, Dev, SJ, Thapa (2019)
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Charged lepton flavor violation
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Charged lepton flavor violation
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Collider constraints
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Collider constraints
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Collider constraints

Babu, Dev, SJ, Thapa (2019)
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Collider constraints

Babu, Dev, SJ, Thapa (2019)
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Constraints from Higgs observables

Babu, Dev, SJ, Thapa (2019)
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EW precision constraints

Babu, Dev, SJ, Thapa (2019)
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Charge breaking minima

Babu, Dev, SJ, Thapa (2019)
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NSI in Zee model 

Babu, Dev, SJ, Thapa (2019)
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Consistency with neutrino oscillation data

Babu, Dev, SJ, Thapa (2019)
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Zee-Burst: A new test of NSI at IceCube

Babu, Dev, SJ , Sui (PRL’ 2019)
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NSI in Zee-Babu model
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NSI in Zee-Babu model
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NSI in KNT model
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NSI in 1-loop LQ (colored-Zee) model
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NSI in 2-loop LQ model
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NSI in 3-loop LQ model
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Collider constraints on leptoquarks
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Collider constraints on leptoquarks
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Babu, Dev, SJ , Thapa (2019)



Other constraints on leptoquarks
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NSI via leptoquarks in radiative models
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Babu, Dev, SJ , Thapa (2019)

Summary of NSI in radiative models 
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Summary of NSI in radiative models 
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Babu, Dev, SJ , Thapa (2019)



Conclusion
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