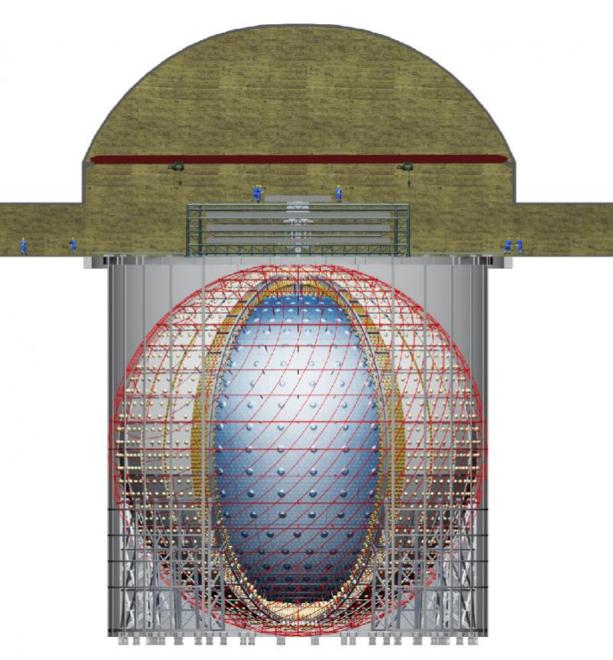
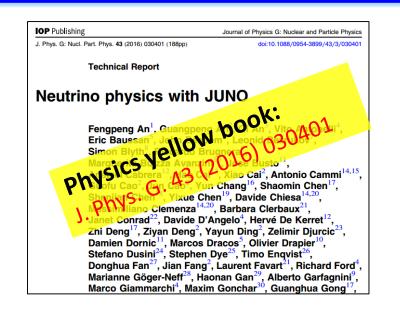
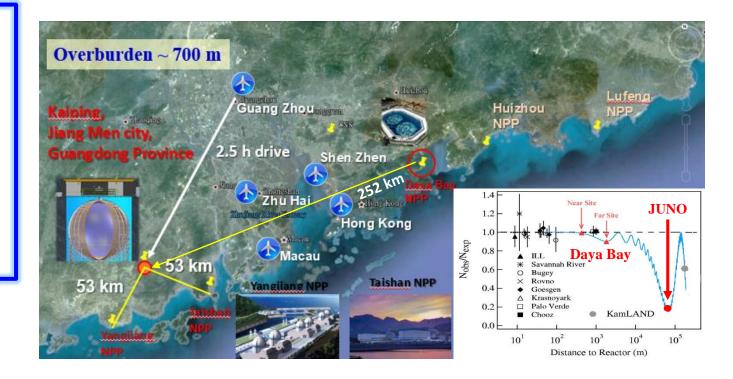
Prospects and Status of the JUNO detector

Cong Guo Institute of High Energy Physics, CAS


On Behalf of the JUNO collaboration

Outline


- > An overview of JUNO
- > Physics prospects
- > The project status of JUNO
 - Liquid scintillator
 - Central detector
 - *PMT*
 - Veto detector
 - Calibration system
 - TAO detector
- > Conclusion



Jiangmen Underground Neutrino Observatory

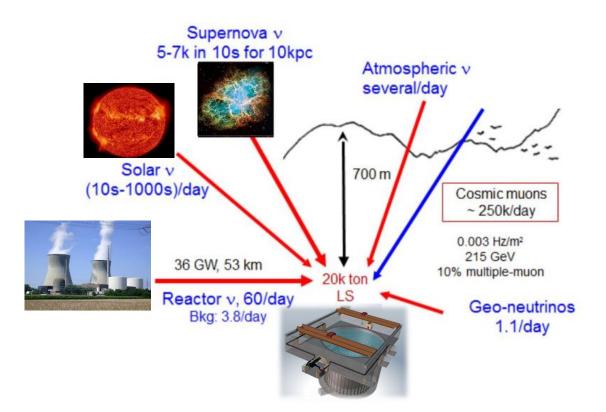
Project:

- Major goal: NMO determination;
- Main Source : Reactor neutrinos;
- Target: 20 kton liquid scintillator ;
- Location: 700m underground;
- Approved in 2013, Construction since 2015, operation in 2023;

NPP	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	Operation	Planned	Planned	Operation	Operation
Power	17.4 GW _{th}	17.4 GW _{th}	17.4 GW _{th}	17.4 GW _{th}	9.2 GW _{th}

JUNO Collaboration

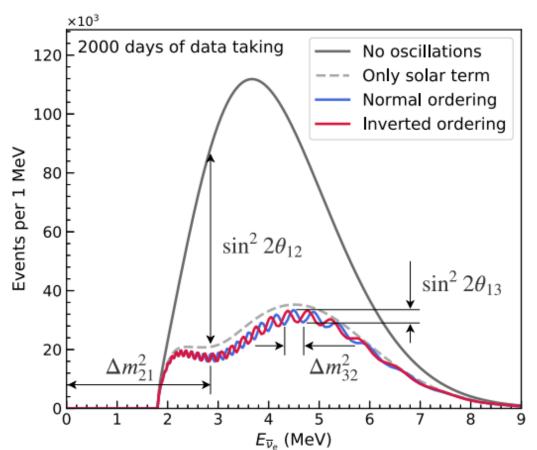
Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	IMP-CAS	Germany	FZJ-IKP
Belgium	Universite libre de Bruxelles	China	SYSU	Germany	U. Mainz
Brazil	PUC	China	Tsinghua U.	Germany	U. Tuebingen
Brazil	UEL	China	UCAS	Italy	INFN Catania -
Chile	PCUC	China 👐	USTC	Italy	INFN di Frascati
Chile	SAPHIR	China	U. of South China	Italy	INFN-Ferrara
China 3	BISEE	China	Wu Yi U.	Italy	INFN-Milano
China	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Milano Bicocca
China	CAGS	China	Xi'an JT U.	Italy	INFN-Padova
China	ChongOing University	China 👘	Xiamen University	Italy	INFN-Perugia
China	CIAE	China	Zhengzhou U.	Italy	INFN-Roma 3
China	DGUT	China	NUDT	Latvia	IECS
China	ECUST	China	CUG-Beijing	Pakistan	PINSTECH (PAEC)
China	Guangxi U.	China	ECUT-Nanchang City	Russia	INR Moscow
China	Harbin Institute of Technology	Croatia	UZ/RBI	Russia	JINR
China	IHEP	Czech	Charles U.	Russia	MSU
China	Jilin U.	Finland	University of Jyvaskyla	Slovakia	FMPICU
China	Jinan U.	France	IJCLab Orsay	Taiwan-China	National Chiao-Tung U.
China	Nanjing U.	France	CENBG Bordeaux	Taiwan-China	National Taiwan U.
China	Nankai U.	France	CPPM Marseille	Taiwan-China	National United U.
China	NCEPU	France	IPHC Strasbourg	Thailand	NARIT
China	Pekin U.	France	Subatech Nantes	Thailand	PPRLCU
China	Shandong U.	Germany	FZJ-ZEA	Thailand	SUT
China	Shanghai JT U.	Germany	RWTH Aachen U.	USA	UMD-G
China	IGG-Beijing	Germany	TUM	USA	UC Irvine
China	IGG-Wuhan	Germany	U. Hamburg		



Physics Prospects

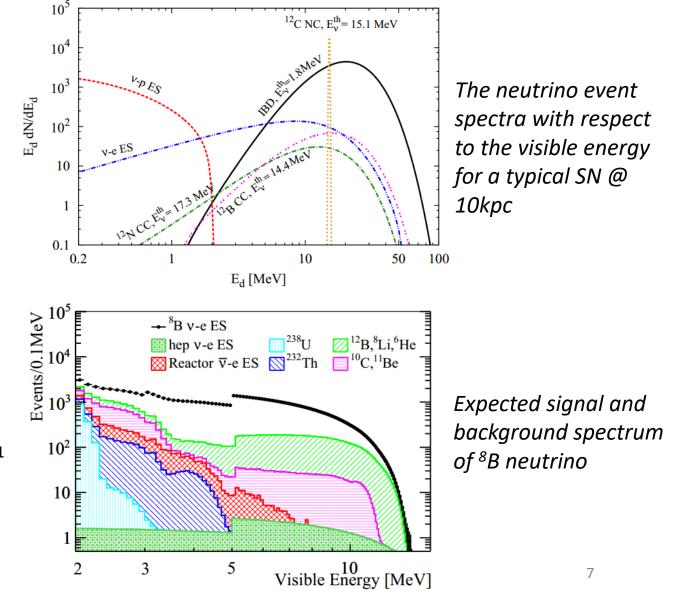
JUNO: A multipurpose neutrino experiment

Phyiscs:


- > Determine neutrino mass ordering;
- Precise measurements of three neutrino oscillation parameters;
- Supernova neutrinos;
- Solar neutrinos;
- > Atmospheric neutrinos;
- Geo-neutrinos;
- > Exotic searches, proton decay;

Neutrino Mass Ordering

$$\begin{split} P_{\overline{v_e} \to \overline{v_e}}(L \ / \ E) &= 1 - P_{21} - P_{31} - P_{32} \\ P_{21} &= \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21}) \\ P_{31} &= \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31}) \\ P_{32} &= \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32}) \\ \Delta_{ij} &\equiv \Delta m_{ij}^2 L \ / \ 4 E_{\nu}(\Delta m_{ij}^2 \equiv m_i^2 - m_j^2) \end{split}$$


- > JUNO determines the NMO using the oscillation interplay between Δm^2_{31} and Δm^2_{32} at a medium reactor baseline (~53 km).;
- JUNO will resolve the NMO using precision spectral measurements of reactor antineutrinos;
- \geq 3 σ neutrino mass ordering sensitivity within 6 years.
- Key: Energy resolution(3%@1MeV);

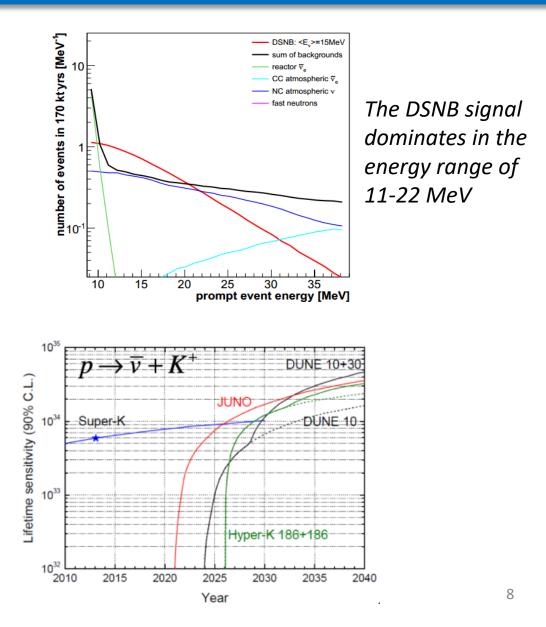
6

Physics Prospects

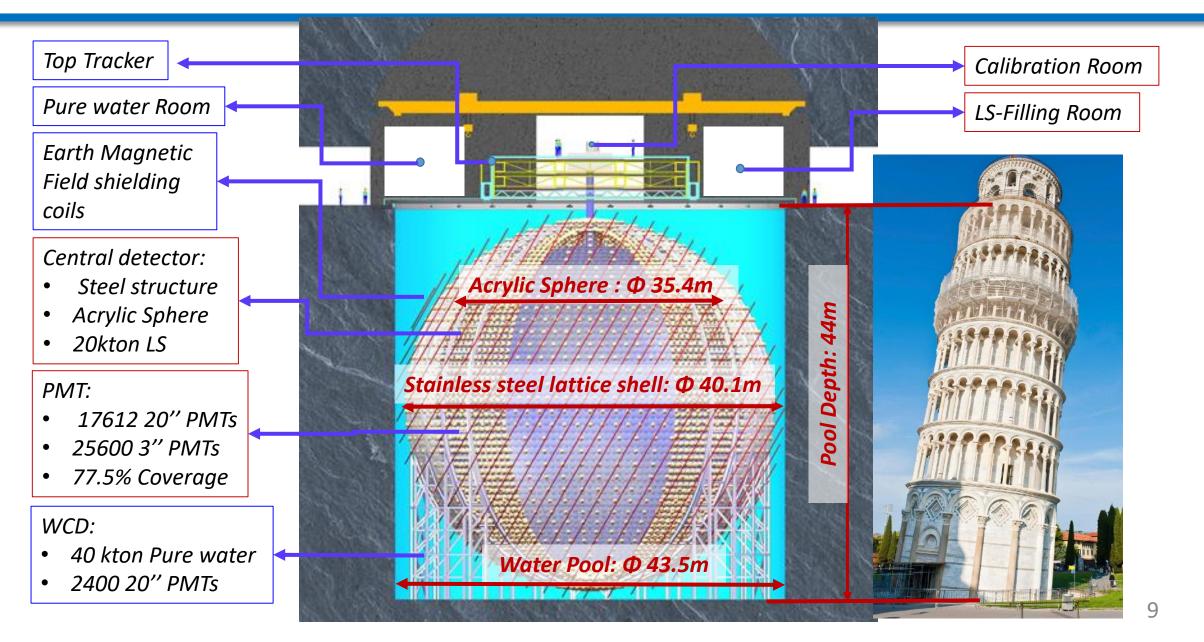
- Supernova neutrinos
 - Sensitive to flavor content, energy spectrum, time evolution;
 - 10000 events (5000 via IBD) for SN @ 10kpc;
- Solar neutrinos
 - ~60k signals and 30k backgrounds are expected in 10 years;
 - Shed new light on current tension in Δm^2_{21} between solar and reactor neutrinos measurement with the same detector;

Physics Prospects

• Diffuse Supernova Neutrino Background (DSNB)

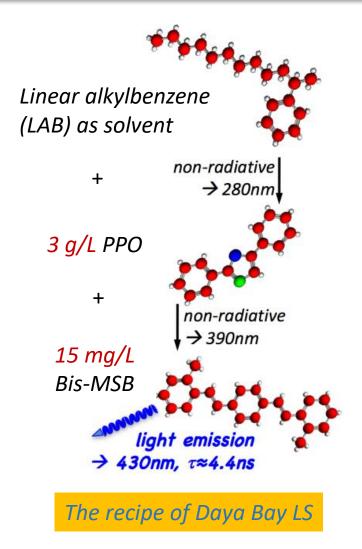

- 3σ sensitivity in 10 years or strongest constraint;
- 2-4 IBDs per year above reactor neutrino energy range;
- Atmospheric neutrinos
 - Complimentary neutrino mass ordering sensitivity via matter effect

Geo-neutrino


- Explore origin and thermal evolution of the Earth
- 400 500 neutrinos per year

Proton decay

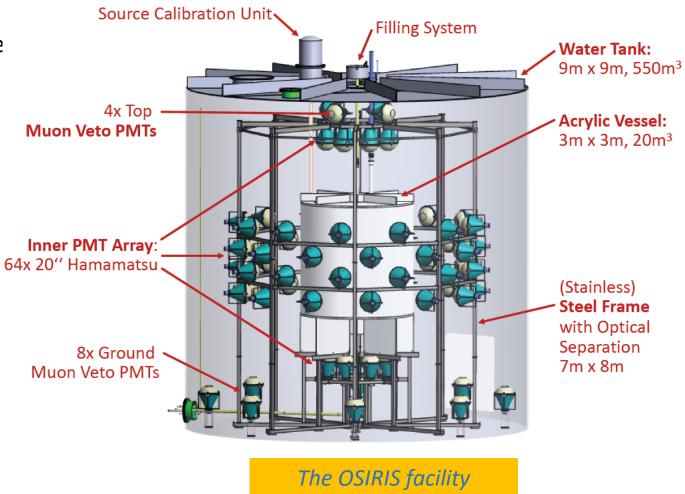
• Competitive sensitivity through $p \rightarrow \bar{\nu} + K^+$



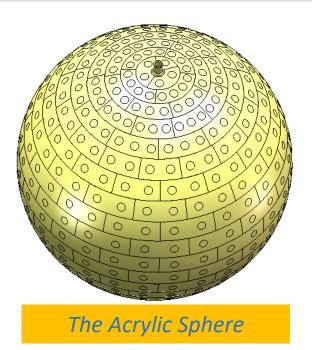
JUNO Detector

Status : Liquid Scintillator

- Using a recipe optimized from Daya Bay's experience;
- Tested and changed to be more suitable for JUNO;
- Higher light yield and more transparent;
 - 2.5g/L PPO;
 - 3mg/L Bis-MSB;
 - Filtration with Al₂O₃ column(Based on the "absorption" technique to remove the impurities and increase the attenuation length of LAB);
- Low background, 10⁻¹⁵ U/Th for reactor neutrinos and 10⁻¹⁷ U/Th for solar neutrinos;
 - Distillation: Remove heavy metal and improve transparency ;
 - Water extraction: Remove U/Th/K;
 - Gas stripping: Remove Ar/Kr/Rn;


Status : Liquid Scintillator

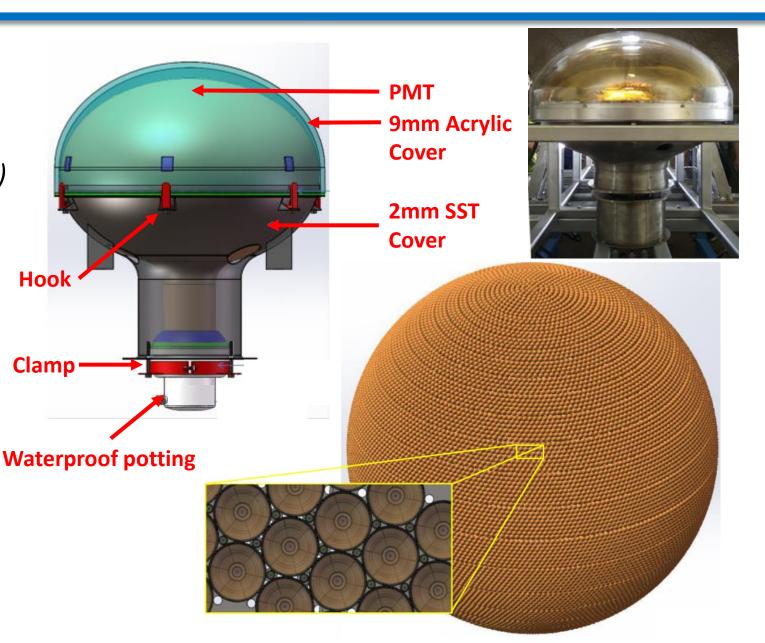
- > 5 kton LS storage tank and LN2 tower are ready, inner pressure of LS tank is ~0.5bar;
- > Alumina Filtration Plant has been delivered onsite;
- Other work is well in progress;


Status : OSIRIS

- Online Scintillator Internal Radioactivity
 Investigation System (OSIRIS);
- Monitor the radio-purity of the LS during the 6-months filling of JUNO, to ensure that no contaminated scintillator arrives inside CD.
- Sensitivity: 10⁻¹⁶g/g for U/Th within 24h measurement;
- Measure ~19 t LS per day;
- > Detector:
 - Φ3m*H3m Acrylic tank;
 - 81 20" PMTs for photon detection;
 - 2.5m water shielding + 12 20" PMTs;
- Water tank is onsite, acrylic vessel is under production, others are well in progress;

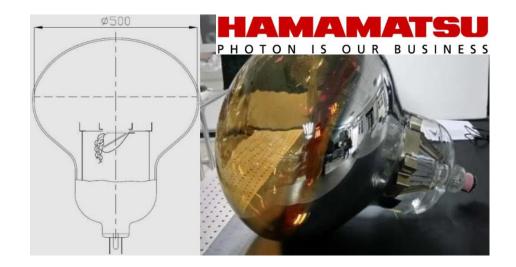
Status : CD Acrylic

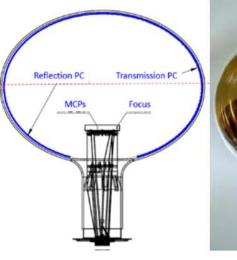
- Central Detector(CD): Acrylic Sphere + Stainless Steel Support ;
- > The acrylic sphere is composed of 265 pieces of spherical panels;
- Thickness:120mm, Net weight: ~600 tons;
- Transparency > 96% in pure water;
- > DonChamp won the bid at 2017.02
 - Flat panel production finished and thermal forming is in progress;
- Process control for low radiation background:
 - Filter in MMA material & Special reaction kettle/pipe;
 - Moulding: pure water/clean room;
 - Thermoforming: film or placket to shield the dust and radon;
 - Bonding: filled with clean air or N₂;
 - Shield Rn: plastic film on the surface of the acrylic;
 - Clean the inner surfaces of the acrylic sphere:
- > The samples for acrylic has met the 1ppt requirement for U/Th;

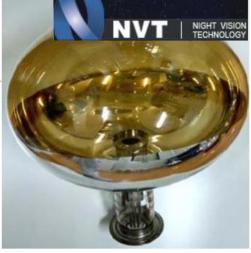


Thermoforming of spherical panel 3m x 8m x 120mm

Status : JUNO PMTs


- Two sizes of PMTs will be used to fully(~78%) cover CD;
 - 17612 20" PMTs for CD (~75%)
 + 2400 20" PMTs for Veto;
 - 25600 3" PMTs(~2.7%);
- Implosion protection;
- Waterproof potting;
- Custom-made divider and electronics;
- Stringent quality control
 - All PMTs will be tested before and after potting;




Status : Large PMT

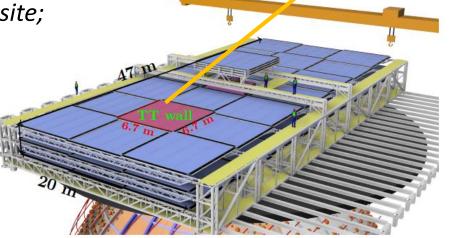
- ➤ Two types of 20" PMTs will be used:
 - 15,000 Micro-channel plates PMTs (MCP-PMT,NNVT);
 - 5,000 Dynode PMTs (Hamamatsu, R12860HQE);
- > MCP-PMTs are custom designed and manufactured for JUNO;
- Bare PMT testing completed, mass potting is on-going;

Characteristic	Unit	MCP-PMT	Dynode PMT
Detection efficiency (QE*DE)	%	28.7	28.1
P/V of SPE	ns	3.5, >2.8	3, >2.5
TTS on top point	ns	~12, <15	2.7, <3.5
Rise/Fall time	ns	2/12	5/9
Anode dark count	Hz	20K, <30K	10K, <50K
After pulse rate	%	1, <2	10, <15
Radioactivity of glass	ppb	²³⁸ U: 75 ²³² Th: 74 ⁴⁰ K: 4	²³⁸ U: 400 ²³² Th: 400 ⁴⁰ K: 40

Status : Small PMT

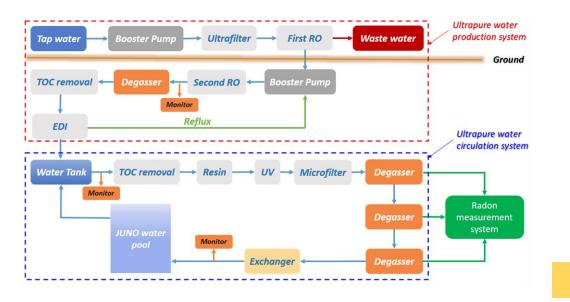
- > Improve the energy scale precision, in particular, the coupling of non-linearity and non-uniformity.
 - SPMTs almost always work at SPE mode for IBD events and are expected to have almost zero dynamic range, hence virtually no non-linearity, thus providing a linear reference to LPMT;
- > 25600 3" PMTs contracted to HZC, the production and bare tests are done, test after potting is ongoing;

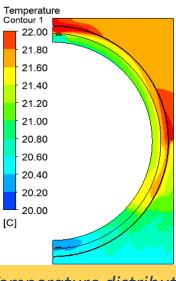
Parameters	Unit	Requirement	Data/Mean
Detection efficiency (QE*CE)	%	>22(Mean>24)	24.9
HV@2*10 ⁶ gain	V	900-1300	1113
SPE resolution	%	<45(Mean<35)	33.2
P-V ration		>2(Mean>3)	3.2
Dark Rate@0.25P.E.		<1.8K(Mean<1K)	512
SPE TTS(FWHM)	ns	<5	3.7
QE non-uniformity	%	<11	4.9
Effective Diameter of cathode	mm	>74(Mean>76)	77.2
Constral response range	%	QE320>5	10.2
Spectral response range		QE550>5	8.6


3" PMTs

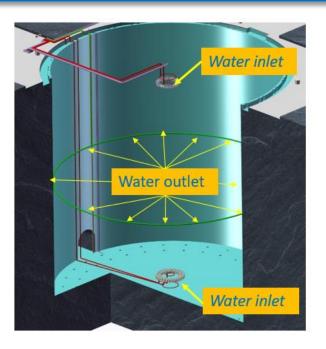
Status : Top Tracker

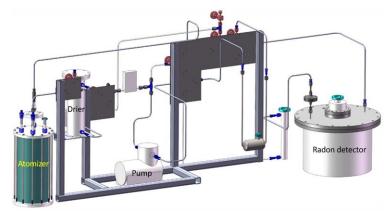
- The top tracker(TT) precisely measure the muon tracking and provide valuable information for cosmic muon induced background study;
- Reusing the plastic scintillators from OPERA Target Tracker ;
 - 62 modules covered half of the top area;
 - 3 TT layers spaced by 1.5 m ,each layer have x,y readout;
 - New electronics cards being designed to account for
 100 × higher radioactivity from rock in JUNO site ;
 - > The plastic modules are already at JUNO site;
 - No significant aging observed;



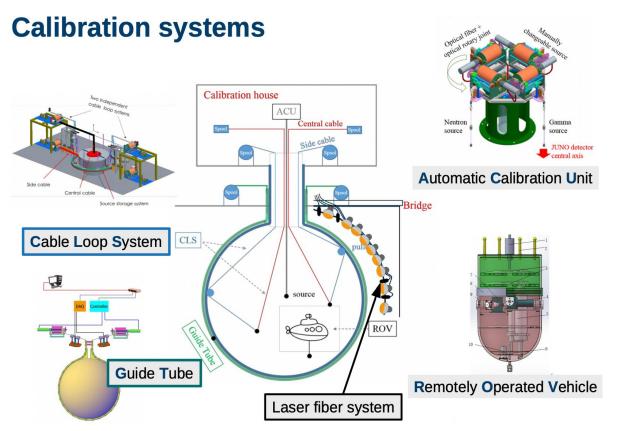


 3×7 modules/layer

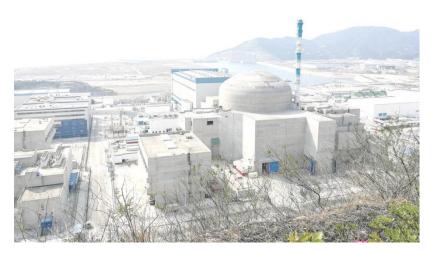

Status : Water Cherenkov Detector


- A pool filled with 35 ktons of ultrapure water and instrumented with 2400 MCP-PMTs to form the water Cherenkov detector;
- Muon tagging efficiency is ~99.5%;
- Fast neutron background ~0.1/day;
- > Water System:
 - *Radon in water for JUNO prototype :< 10mBq/m³;*
 - Calculation results show $20 \degree C < T_{water} < 22 \degree C$;

Temperature distribution



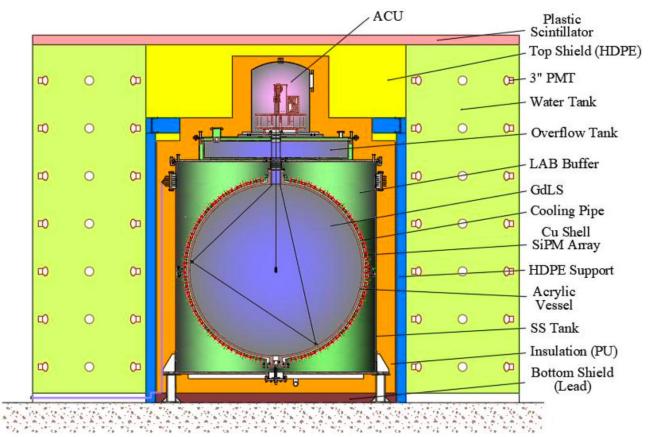
Radon measurement system


Status : Calibration system

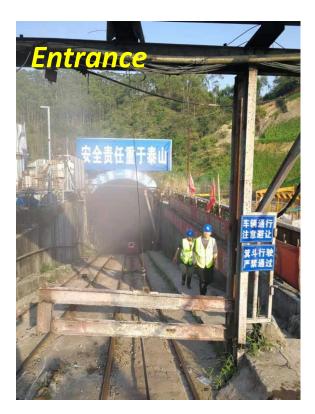
- The calibration system need to accurately address both the non-uniformity and non-linearity in the detector energy response;
- Energy scale uncertainty < 1%;</p>
- > Four complementary subsystems:
 - 1-D: Automated calibration unit(ACU);
 - ightarrow Scan the central axis;
 - 2-D: Cable loop system(CLS);
 - ightarrow Scan vertical plane;
 - 2-D: Guide tube calibration system(GTCS);
 - \rightarrow Scan CD outer surface;
 - 3-D: Remotely operated vehicle(ROV);
 - \rightarrow Full detector scan;
- Radioactive Sources:
 - γ, e+, n sources
 - ¹³⁷Cs, ⁵⁴Mn, ⁶⁰Co, ⁴⁰K, ⁶⁸Ge, ²⁴¹Am-Be, ²⁴¹Am-¹³C;

Status : JUNO-TAO

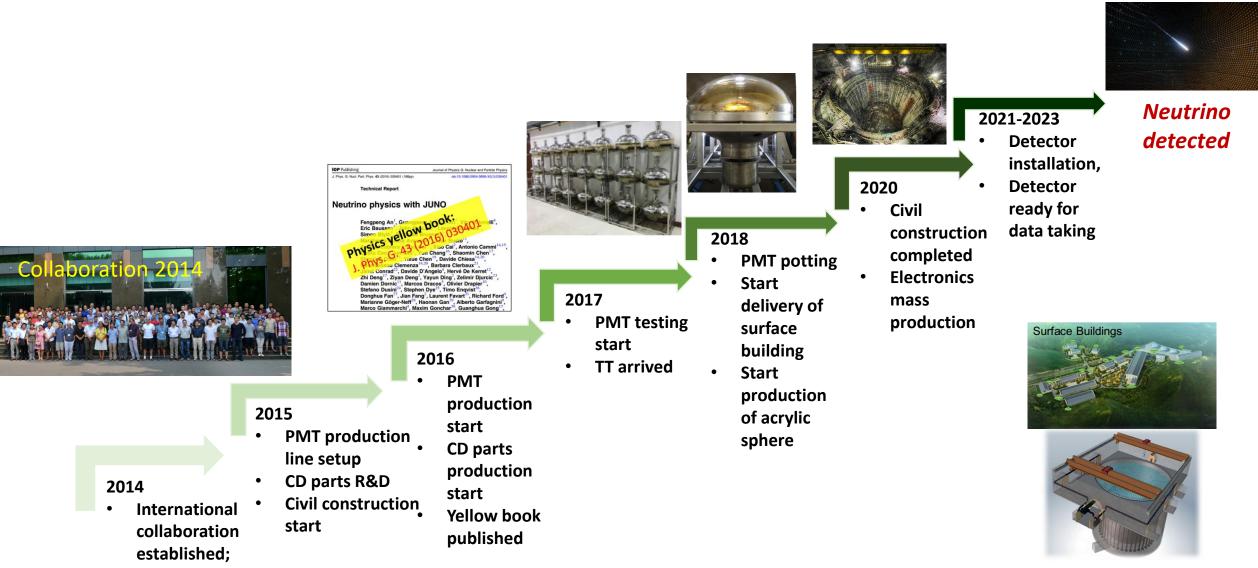
- Taishan Antineutrino Observatory (TAO), a ton-level, high energy resolution LS detector at 30m from the core, a satellite experiment of JUNO;
- To measure the fine structure of the reactor neutrino spectrum, and eliminate the model dependence of JUNO MO determination;
- > TAO will be located at Taishan nuclear power plant;
 - 4.6 GW_{th} in operation;
 - Spacious room at 10 m underground;
 - ~30m horizontally from core;
- Event rate: ~2000 IBD/day;
- Energy resolution: ~2%@1MeV;



R&D status : TAO


> Target:

- *Gd-LS, 2.6 ton in total and 1 ton fiducial volume;*
- > Detector:
 - *Gd-LS* + *Acrylic* + *LAB* + *SiPM*;
- ➢ Full coverage with SiPMs, PDE>50%
- Light yield: 4500 P.E./MeV;
- Operated at -50 Centigrade (SiPM dark noise);
- A 1:1 prototype is under construction and it will be tested without full SiPM;
- TAO is expected to start operation in 2022;


R&D status : Civil construction

- Blasting completed on Dec. 30, 2020 ;
- We are in the period of transition from civil construction to experimental installation;

Milestones & Schedule

Summary

- > JUNO: Rich neutrino physics prospects
 - Determine MO with 3-4σ with 6 years data;
 - Measure the neutrino oscillation parameters $\sin^2 2\vartheta_{12}$, Δm^2_{21} , and $|\Delta m^2_{32}|$ to a precision of better than 0.6%;
 - Study neutrinos from supernova, the Sun, the Earth;
 -;
- > The detector: A massive LS detector with excellent energy resolution
 - The largest acrylic sphere ever constructed;
 - 20 ktons of highly transparent LS;
 - Instrumented with 20000 20" PMTs and 25600 3" PMTs;
 - 4 calibration subsystems;
 - Reference measurement of reactor neutrino energy spectrum with TAO;
- Experimental installation will start soon, data taking expected to start in 2023.

Thanks for your attention!