

Outline

- Electron capture in ¹⁶³Ho and neutrino mass ECHo & HOLMES
- Experimental challenges
 ¹⁶³Ho Source
 Detectors
 readout
- From R&D to large scale experiments
- Conclusions

Electron capture in ¹⁶³Ho

- $\tau_{1/2}\,\cong$ 4570 years $\,$ (2*10^{11} atoms for 1 Bq) $\,$
- $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV
- S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Electron capture in ¹⁶³Ho – Q_{EC} -value

• $\tau_{1/2}\,\cong4570$ years $\,$ (2*10^{11} atoms for 1 Bq)

• $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

$$Q_{\rm EC} = m(^{163}{\rm Ho}) - m(^{163}{\rm Dy})$$

Penning Trap Mass Spectroscopy @TRIGA TRAP (Uni-Mainz) (♦) @SHIPTRAP (GSI – Darmstadt) (♦ ♦)

Future goal: 1 eV precision: PENTATRAP @MPIK, Heidelberg (*) CHIP-TRAP @CMU Mount Pleasant (US) (**)

- (*) F. Schneider et al., Eur. Phys. J. A **51** (2015) 89
- (♦ ♦) S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501
- (*) J. Repp et al., Appl. Phys. B 107 (2012) 983
- (*) C. Roux et al., Appl. Phys. B 107 (2012) 997
- (**) M. Redshaw et al Nucl.Instrum.Meth. B376 (2016) 302-306

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

- $\tau_{1/2}\,\cong4570$ years $\,$ (2*10^{11} atoms for 1 Bq)
- $Q_{\rm FC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV
 - S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

- $Q_{\rm FC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV
- S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

P. T. Springer, C. L. Bennett, and P. A. Baisden Phys. Rev. A 35 (1987) 679

- $\tau_{1/2}\,\cong4570$ years $\,$ (2*10^{11} atoms for 1 Bq)
- $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV
- S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

Calorimetric measurement

Source = Detector

 V_e

 V_e

 V_e

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

 V_e

Calorimetric measurement

Source = Detector

P. C.-O. Ranitzsch et al., Phys. Rev. Lett. **119** (2017) 122501

• $\tau^{}_{1/2}\,\cong$ 4570 years $\,$ (2*10^{11} atoms for 1 Bq)

• $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

- $\tau_{1/2}\,\cong$ 4570 years $\,$ (2*10^{11} atoms for 1 Bq)
- $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV
- S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Ab-initio calculations foresee a smooth shape at the endpoint region

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

 V_e

 V_e

V_e

Parameters for v mass sub-eV sensitivity

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

Unresolved pile-up ($f_{pu} \sim a \cdot \tau_r$)

- *f*_{pu} < 10⁻⁵
- $\tau_r < 1 \,\mu s \rightarrow a \sim 10 \,\text{Bq}$
- 10⁵ pixels

Precision characterization of the endpoint region

• $\Delta E_{\text{FWHM}} < 3 \text{ eV}$

Background level

• < 10⁻⁶ events/eV/det/day

Parameters for v mass sub-eV sensitivity

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

Unresolved pile-up ($f_{pu} \sim a \cdot \tau_r$)

- $f_{\rm pu} < 10^{-5}$
- $\tau_r < 1 \,\mu s \rightarrow a \sim 10 \,\text{Bq}$
- 10⁵ pixels

Precision characterization of the endpoint region

• $\Delta E_{\text{FWHM}} < 3 \text{ eV}$

Background level

< 10⁻⁶ events/eV/det/day

Improved sensitivity for a given number of ¹⁶³Ho events due to larger count-rate in the endpoint region

Parameters for v mass sub-eV sensitivity

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

Unresolved pile-up ($f_{pu} \sim a \cdot \tau_r$)

- $f_{\rm pu} < 10^{-5}$
- $\tau_r < 1 \,\mu s \rightarrow a \sim 10 \,\text{Bq}$
- 10⁵ pixels

Precision characterization of the endpoint region

• $\Delta E_{\text{FWHM}} < 3 \text{ eV}$

Background level

• < 10⁻⁶ events/eV/det/day

European (strong German group) collaboration Funded to ~eV sensitivity

The ECHo Collaboration EPJ-ST 226 8 (2017) 1623

European/US collaboration Funded to ~eV sensitivity

B. Alpert et al, Eur. Phys. J. C 75 (2015) 112

Experimental challenges

Experimental challenges 1: ¹⁶³Ho source

Required activity in the detectors: Final experiment $\rightarrow >10^6$ Bq $\rightarrow >10^{17}$ atoms

H. Dorrer et al, Radiochim. Acta 106(7) (2018) 535–48 J.W. Engle et al., Nucl. Instrum. Meth. B 311 (2013) 131

Low temperature microcalorimeters for the measurement of the ¹⁶³Ho spectrum

- Very small volume
- Working temperature below 100 mK small specific heat small thermal noise
- Very sensitive temperature sensor

F. Gatti et al., Physics Letters B 398 (1997) 415

31 (2021) 2100205

Low temperature microcalorimeters for the measurement of the ¹⁶³Ho spectrum

Detector arrays produced at NIST (Boulder US)

- Very small volume
- Working temperature below 100 mK small specific heat small thermal noise
- Very sensitive temperature sensor

F. Gatti et al., Physics Letters B 398 (1997) 415

Detector arrays produced at KIP, Heidelberg University

Low temperature microcalorimeters for the measurement of the ¹⁶³Ho spectrum

Detector arrays produced at NIST (Boulder US)

- Very small volume
- Working temperature below 100 mK small specific heat small thermal noise
- Very sensitive temperature sensor

Detector arrays produced at KIP, Heidelberg University

F. Gatti et al., Physics Letters B 398 (1997) 415

Low temperature microcalorimeters for the measurement of the ¹⁶³Ho spectrum

F. Gatti et al., Physics Letters B 398 (1997) 415

Experimental challenges 3: enclosing ¹⁶³Ho

¹⁶³Ho ion-implantation is used both by ECHo and HOLMES:

- Mass separation and ion implantation in MMC pixels
- RISIKO @ Institute of Physics, Mainz University
 - Resonant laser ion source efficiency

(69 ± 5^{stat} ± 4^{syst})%

- Reduction of ^{166m}Ho in MMC
 ^{166m}Ho/¹⁶³Ho < 4(2)10⁻⁹
- Optimization of beam focalization

Mass seperation and ion implantation in TES pixels Mass separator and implanter installed @ Physics Department, Genoa University

- Argon sputter ion source
- Acceleration section → up to 50 kV

→ Commissioning phase

Experimental challenges 4: multiplexing

Microwave SQUID multiplexing offers the possibility to readout a large number of channels maintaining a large bandwidth Both ECHo and HOLMES use such approach, but differently optimized

M. Wegner et al., J. Low Temp. Phys. **193**, 462 (2018)

B. Alpert et al., EPJ C 79 (2019) 304

From R&D to large experiments

1 readout channel \rightarrow ~100 detectors

1 readout channel \rightarrow 1 detector

ECHo-1k

C. Velte et al., EPJC 79 (2019) 1026

60 MMC pixels with about 1 Bq ¹⁶³Ho parallel 2-stage SQUID readout more that 10⁸ ¹⁶³Ho events

Achievable sensitivity m(v_e) < 20 eV (95% C.L.)

ECHo-100k: sub-2eV sensitivity

DFG Deutsche Forschungsgemeinschaft

The ECHo Collaboration EPJ-ST 226 8 (2017) 1623

ECHo-100k baseline: large arrays of metallic magnetic calorimeters

Number of detectors: Activity per pixel:

12000 10 Bq (2 \times 10¹² ¹⁶³Ho atoms)

Present status:

High Purity ¹⁶³Ho source:

• available about 18 MBq

Ion implantation system:

demostrated on single chip
 → next stage: wafer scale implantation

Metallic magnetic calorimeters

- reliable fabrication of large MMC array
 - \rightarrow next stage: ECHo-100k wafers in production
- successfull characterization of arrays with ¹⁶³Ho

Multiplexing and data acquisition:

- demostrated for 8 channels
 - \rightarrow next stage: ¹⁶³Ho spectrum and test on larger arrays

Data reduction

• optimized energy independent algorithm to identify spurious traces

HOLMES: sub-2eV sensitivity

HOLMES baseline: large arrays of Transition Edge Sensors

Number of detectors: Activity per pixel:

1000 300 Bq (6 × 10¹³ ¹⁶³Ho atoms)

Present status:

High Purity ¹⁶³Ho source:

• available about 110 MBq

Ion implantation system:

• commissioning in 2021

Transition Edge Sensor arrays

- reliable fabrication of large TES array
- succesfull characterization of empty arrays
- still to demonstrate performance with 300 Bq

Multiplexing and data acquisition:

completed and demonstrated for 32 channels

Data reduction

• optimized algorithms to reduce unresolved pile-up background

B. Alpert et al, Eur. Phys. J. C (2015) 75:112 A. Nucciotti, Eur. Phys. J. C (2014) 74:3161

Conclusions and outlook

- V The determination of the electron neutrino mass with ¹⁶³Ho is complementary to the determination of the electron antineutrino mass with ³H
- V Determination of the ¹⁶³Ho spectral shape is indicates that the spectral shape at the endpoint region is smooth
- **v** ECHo and HOLMES have already demonstrated:

production and purification of large amount of ¹⁶³Ho sample operation of large arrays of high resolution low temperature detectors

- **v** Background identification and suppression to achieve the unresolved pile-up limit
- V HOLMES detector modules will be soon tested for ¹⁶³Ho enclosure
- V ECHo is now a running experiment on the way to provide a new limit on the electron neutrino mass and ready for upgrades to larger arrays

V First multiplexed ¹⁶³Ho spectra will tell us if reaching sub-eV sensitivity is just a matter of scaling up

