

Latest CMS Higgs (125) results on behalf of the CMS Collaboration

Guenakh Mitselmakher

University of Florida on behalf of the CMS Collaboration

20th Lomonosov Conference on Elementary Particle Physics 2021

Outline

Higgs boson mass is the only free parameter (assuming SM): I will show the CMS results of mass measurements

Look for deviations in H(125) boson properties from the SM predictions

Non-SM like structures in production and decay amplitudes: spin-parity, mixed states... Rates in different production and decay modes: test of couplings to SM particles Natural width: can provide an indirect sign for presence of abnormal decay modes

Look for abnormal wrt SM production and decay modes of H(125) boson

In a short talk, I will show only some selected (by me) results

Higgs boson mass

Higgs mass – the only free parameter in the Higgs sector (assuming SM)

all other parameters are set by the known masses of W and Z bosons, and fermions

Most precise mass measurements channels are:

 $H \rightarrow ZZ \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$

statistical power is very similar

challenge in H $\rightarrow \gamma\gamma$: systematics ~ stat error

Run 1 + 2016 results: 15 Feb 2020, PLB 805 (2020) 135425 125.38 ± 0.14 GeV (~0.1% !)

Run 1 + Run 2:

expect precision better than 100 MeV

HL-LHC:

statistical uncertainty ~10 MeV the challenge will be controlling syst. uncertainties

Looking for deviations in SM-like properties

Higgs decay modes in SM (green - established)

Established production modes

Intermediate Run 2 combination 9 Jan 2020, HIG-19-005 [mix]

- $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$, $H \rightarrow WW$, $H \rightarrow \tau \tau$, $H \rightarrow bb$, $H \rightarrow \mu \mu$
- $ttH (H \rightarrow WW/ZZ/\tau\tau) \rightarrow leptons$

$ttH, H \rightarrow \gamma\gamma$

25 Mar 2020, PRL 125 (2020) 061801 [Run 2]

- Significance 6.6
- $\mu = 1.13 \pm 0.10$

ttH, *ttH* ($H \rightarrow WW/ZZ/\tau\tau$) \rightarrow *leptons*

7 Nov 2020, HIG-19-008 [Run 2]

- Significance 4.7
- $-\mu = 0.92 \pm 0.24$

Guenakh Mitselmakher

20th Lomonosov Conference, 2021

Fit for couplings modifiers

Event rate for
$$ii \to H \to ff$$
: $\sigma_i \mathcal{B}^f = \frac{\sigma_i(\vec{\kappa})\Gamma^f(\vec{\kappa})}{\Gamma_H(\vec{\kappa})}$

Fit for six Higgs coupling modifiers: κ_{W} , κ_{Z} , κ_{t} , κ_{b} , κ_{τ} , κ_{μ} Assuming:

- no "new physics" in loop-driven couplings $(H \rightarrow \gamma \gamma, gg \rightarrow H)$
- no BSM decays (invisible, not observed)
- couplings to the 1st/2nd–gen. quarks and electrons are SM-like (i.e., small and hence having a negligible effect on the fit)

Impressive agreement with SM over three orders of magnitude of couplings ! (note: ±5% for ttH coupling)

Are H125 quantum J^{CP} numbers 0⁺⁺, as predicted by the SM ?

INTRO: Higgs bosonic (V) coupling structure

General Lagrangian for HVV interactions up to dim-5 operators: $L = \left[-\frac{a_1}{2\nu} m_V^2 H V_\mu V^\mu - \frac{a_2}{2\nu} H F_{\mu\nu} F^{\mu\nu} - \frac{a_3}{2\nu} H F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{a_4}{2\nu} H V_\mu \odot V^\mu + \frac{a_5}{2\nu} \odot H V_\mu V^\mu \right]$

SM dim-3 operator dim-5 operators: loop-induced (very small in SM) or, otherwise, non-renormalizable magenta factors with a_i/v are one of a conventions; they could've been written just as $1/\Lambda_i$ In SM: $a_1 = 2$ for ZZ, WW a_2 term is CP-even. In SM, $a_2 \sim O(10^{-2})$ [it is actually the lowest-order term for $H \rightarrow \gamma\gamma$] The term vanishes for $\gamma\gamma$ a_3 term is <u>the CP-odd term</u>. In SM, $a_3 \sim O(10^{-11})$ [due to CP-violation in the quark sector] a_4 term is is yet another CP-even distinct operator. In SM, $\sim O(10^{-2})$

*a*₅ term is experimentally <u>indistinguishable</u> from SM in <u>on-shell studies</u> (important for off-shell)

HVV couplings can be probed in $H \rightarrow VV$ decays and VH and VBF production modes: four-fermion kinematics is sensitive to the HVV coupling structure. This technique was used to establish π^0 parity in 1962: $\pi^0 \rightarrow \gamma^* \gamma^* \rightarrow (ee)(ee)$

When combining, HZZ and HWW processes, one has to assume how a_i^{ZZ} and a_i^{WW} are related to each other

Higgs bosonic (V) coupling structure

H→ZZ→4I

- On-shell analysis only
- WW and ZZ couplings a_i^{WW} and a_i^{ZZ} are related via custodial and SU(2)xSU(1) symmetries:
 - $a_1^{WW} = a_1^{ZZ}$
 - $a_2^{WW} = \cos^2 \theta_W a_2^{ZZ} + \cdots$ (negligible)
 - $a_3^{WW} = \cos^2 \theta_W a_3^{ZZ} + \cdots$ (negligible)
 - ...
- Production modes: VBF tag, VH tag, untagged
- ME-based discriminants

68% CL:
$$a_3^{ZZ} / a_1^{ZZ} = 0.018^{+0.066}_{-0.034}$$

 $a_2^{ZZ} / a_1^{ZZ} = -0.004^{+0.045}_{-0.058}$

Coupling ratios are extracted from ratios f_{a3} and f_{a2} (Approach 2), given in the paper

- red line: SM 0^+ - blued line: 0^-

Guenakh Mitselmakher

INTRO: Higgs fermionic (f) coupling structure

General lowest-dim Lagrangian for Higgs-fermion interactions:

$$L = -\frac{m_f}{v} \bar{\psi}_f (\kappa_f + i\tilde{k}_f \gamma_5) \psi_f H$$

SM:
$$\kappa_f = 1$$
, $\tilde{k}_f = 0$; hence, $\phi = 0$ MSSM: $\phi \approx 0$ nMSSM: ϕ can be large, but < 27° (due to existing experimental constraints)

Higgs fermionic coupling structure: ttH

25 Mar 2020, PRL 125 (2020) 061801 [Run 2]

Final states used:

 $pp \rightarrow ttH \rightarrow (jjb)(jjb)(\gamma\gamma)$ [all-hadronic] $pp \rightarrow ttH \rightarrow (lvb)(jjb)(\gamma\gamma)$ [semi-leptonic]

Building a ME-based discriminant that would account for a whole slew of jet mis-measurements (plus missing neutrino in semi-leptonic channel) is challenging...

Instead, a BDT-based discriminant (D₀) is built using CP-even and CP-odd MC models, with the following inputs:

kinematics of the first six jets (in pT) and their b-tag scores

 (φ, η) -direction of the diphoton system

for semi-leptonic channel: lepton multiplicity, leading lepton kinematics

Pure CP-odd ttH coupling is disfavored at 3.2 σ 68% CL: $|\phi| < 35^{\circ}$ 95% CL: $|\phi| < 55^{\circ}$

events are S/(S+B) weighted background is subtracted $|f_{CP}| = \sin^2 \phi$

Higgs fermionic coupling structure: $H\tau\tau$

Final states used: $\tau_{\mu}\tau_{h}$ and $\tau_{h}\tau_{h}$

 $\begin{aligned} \tau_{\mu} &\rightarrow \mu^{\pm} \nu \nu (17\%) \\ \tau_{h} &\rightarrow \pi^{\pm} \nu (12\%) \\ &\rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu (26\%) \\ &\rightarrow a_{1}^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \pi^{0} \nu (10\%) \\ &\rightarrow a_{1}^{\pm} \nu \rightarrow \pi^{\pm} \pi^{\pm} \pi^{\mp} \nu (10\%) \end{aligned}$

Signal (H) vs Bkg BDT enhances the signal VBF contribution with two forward-backward jets

Building a ME-based discriminants that would account for jet mis-measurements and missing neutrinos is possible, but challenging...

Distributions of angles between planes set by observable particles from decaying tau leptons (ϕ_{CP}) are sensitive to CP-admixture phase ϕ

Pure CP-odd ttH coupling is disfavored at 3.2σ 68% CL: $\phi = 4 \pm 17^{\circ}$ 95% CL: $|\phi| < 36^{\circ}$

Guenakh Mitselmakher

Higgs(125) width

Most precise Higgs (125) width measurements (indirect)

1 Jan 2019, PRD 99 (2019) 112003 [Run 1 + 2016 + 2017] From the ratio of off-shell to on-shell rates using $H \rightarrow ZZ \rightarrow 4\ell$

And assuming:

- SM-like amplitude structure for $H \rightarrow ZZ$
- No significant BSM physics in $gg \rightarrow H$ up to $m_{H^*} \sim 1 \text{ TeV}$

From the combination of all on-shell decays

And assuming:

- SM-like amplitude structure for Higgs couplings
- $|\kappa_w|, |\kappa_z| \le 1$ (hard to build a theory violating these conditions)

Non- SM decay/production modes of the H125 boson

Search for Charged Lepton Flavor Violation in decays: $H \rightarrow \mu \tau, H \rightarrow e \tau$

17 Mar 2021, HIG-20-009 [Run 2]

Channels used:

- *μτ*_h, *μτ*_e
- **ε**τ_h, **ε**τ_μ

Very similar to the "nominal" H $\rightarrow \tau\tau$ analysis, except that μ and e

- are prompt
- tend to have larger momenta

BDT is used to separate signal from non-Higgs bkg and $H \to \tau\tau$

 $B(H \rightarrow \mu\tau) < 0.15\%$ $B(H \rightarrow e\tau) < 0.22\%$

⁴ Higgs production cross-section with decays $H \rightarrow \tau \tau$

Cross sections of the Higgs boson production have been measured in the Higgs decay channel of two τ leptons. Fiducial inclusive cross section is 426 ± 102 fb, in agreement with the standard-model. Differential cross sections as functions of the Higgs boson transverse momentum, the jet multiplicity, and transverse momentum of the leading jet, are in

23 Jul 2021 arXiv:2107.11486 Sub to PRL

138 fb⁻¹ (13 TeV)

Observed and expected differential fiducial cross section in bins of **N**_{jets}

agreement with the SM expectations, with a competitive precision with other final states.

Summary

- the H125 Higgs looks more and more SM-like
 - keep looking for small deviations
 - some measurements already challenge the accuracy of theoretical predictions

Full-Run2 analyses are still to come – stay tuned

Run 3 (2022-2024) – expect to triplicate the integrated luminosity and CMS is being made an even more capable detector! More Higgs analyses will be at presently constructed HL LHC (High Luminosity LHC) - new accelerator at CERN.

BACKUP SLIDES