

Gouranga Kole University of Cyprus

On behalf of the CMS collaboration

Friday 20th August, 2021

Introduction

- ✓ Standard Model of particle physics is the most successful theory
- ✓ But, the SM cannot explain everything: dark matter and matter-antimatter asymmetry
- ✓ The 2HDM is an extension of the SM adding an extra complex scalar doublet
- ✓ 2HDM predict:
- * CP even h^0 (125 GeV) and H^0
- * CP odd A^0
- $\checkmark\, {\rm Electrically\, charged}\, H^+ \, {\rm and}\, H^-$
- Finding any of the charged Higgs would sign for new physics beyond SM

Model	Type I	Type II	Туре Х	Туре Ү
	Fermiophobic I	MSSM-like	Lepton-specific	Flipped
Φ ₁	-	d,l	ℓ	d
Φ ₂	u,d,ℓ	и	u,d	и,ℓ

Additional Bosons: CMS Run-2 Results

Higgs to Boson

 $H/A \rightarrow Z(II)A/H(bb)$ JHEP 03 (2020) 055

 $H^+ \longrightarrow WA$ Phys. Rev. Lett. 123, 131802 (2019)

Chasing Charged Higgs at LHC

Branching ratios for tan $\beta = 3$

- ✓ Production at tree level controlled by: $tan\beta = \frac{v2}{v1}$ and m_A
- ✓ Two possible production ways at LHC energies:
- → $m_{H^+} < m_t$: $\checkmark pp \rightarrow t\bar{t} \rightarrow bH^+bW^-$ with $t \rightarrow bH^+$ → $m_{H^+} > m_t$:
 - $\checkmark pp \rightarrow tbH^+$

✓ For $tan\beta < 1 \tau^+ \nu$ and $c\bar{s}$ dominating at low m_{H^+}

- ✓ *tb* dominate on large masses once kinematically accessible
- ✓ hW and HW offers new complementary and constraint for 2HDM

https://arxiv.org/pdf/1607.01320.pdf

Results: Charged Higgs to $C\overline{S}$

No excess or deficit of events observed

An upper limit on the BR is set in range (1.68-0.25)% for a higgs mass of 80-160 GeV

Charged Higgs: $H^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$

Upper limit on $\sigma_{H^{\pm}} \times B(H^{\pm} \to \tau^{\pm} \nu_{\tau})$ is 6 to 0.005 pb for the Higgs mass range 80 to 3000 GeV

Charged Higgs: $H^{\pm} \rightarrow tb$ Leptonic

H^+ decay into top and bottom quarks is dominant for heavy m_{H^\pm}

- Final states: Two W bosons (leads to single lepton or dilepton final states)
- ✓ Total five states: e^{\pm} , μ^{\pm} , e^+e^- , $e^{\pm}\mu^{\mp}$, $\mu^+\mu^-$

- \blacksquare Events are categorized in N_{jets} and $N_{b jet}$ bins
- $\ensuremath{^{arepsilon}}$ Major background is $t\overline{t}$, minor: Single-t , electroweak

Charged Higgs: $H^{\pm} \rightarrow tb$ Leptonic

- ${f arepsilon}$ Final discriminant: BDT output for (e^{\pm}, μ^{\pm}) final state
- ☑ Dilepton (e^+e^- , $e^\pm\mu^\mp$, $\mu^+\mu^-$) uses DNN classifier as final discriminant
- Simultaneous binned ML is performed

Upper limits of 9.6–0.01 pb are set on the $m_{H^{\pm}}$ range (200-3000 GeV)

~45%

multijet

resolved t

boosted W

1000

1500

2000

500

Charged Higgs: $H^{\pm} \rightarrow tb$ Hadronic

Charged Higgs: $H^{\pm} \rightarrow tb$ Hadronic

Model independent upper limit on the $\sigma_{H^{\pm}} \times B(H^{\pm} \to tb)$ is 6 to 0.007 pb are set for the Higgs mass range 200 to 3000 GeV

Charged Higgs Decay to Bosons

- ✓ Motivated by Georgi-Machacek model with SU(2) doublets or triplets scalars to the SM introduce couplings of gauge bosons to heavy neutral or charged Higgs bosons
- ✓ Clean signature: Same Sign (2I) or (3I) final state + two VBF jets
- ✓ Search is done in bins of M_{jj} and M_T^{VV}
- ✓ WW and WZ measured on the fly
- ✓ Non prompt / Fakes from data CR

m_{H⁺⁺} [GeV]

 m_{H^+} [GeV]

arXiv:2104.04762

- No significant excess of events above the expectation from the SM
- Exclusion for charged Higgs $m_{\!H^{++}}\approx 2.5~{\rm TeV}$ and $m_{\!H^+}\approx 2~{\rm TeV}$

Bin

 $aa
ightarrow \mu\mu au au$ jhep 08 (2020) 139

15

- \mathbf{M} Mass range: 3.6 < m_a < 21 GeV
- ☑ h, H(300) production mechanisms: ggH (main) and VBF
- **Solution** Used special reconstruction technique to efficiently identify $a \rightarrow \tau_h \tau_h$
- Signal extraction: fit to unbinned 2D $m(\mu, \mu)$ vs. $m(\mu, \mu, \tau_h, \tau_h)$ distribution
- Solution: Z+Jets and QCD-multijet dominates, modeled using CR in data

Summary & Outlook

- ✓ The recent results of charged higgs sector has been presented
- ☑ The discovery of a charged Higgs boson will be a clear sign of BSM physics
- New promising decay channel are being exploited
- ☑ Further improvements will be obtained with Run-3 data, and finally with
 - HL-LHC data

CMS is analysing the full Run-2 dataset and also preparing for Run-3 data

Stay tuned!

0

This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation under the project

EXCELLENCE/0918/0379

Ευρωπαϊκή Ένωση

Ευρωπαϊκά Διαρθρωτικά και Επενδυτικά Ταμεία

Κυπριακή Δημοκρατία

Back up:Charm Tagging

19

1 tight and isolated lepton (muon or electron)

PF Rel. Isolation < 0.15 (muon) or 0.08(EB)/0.07(EE) (electron)

 p_{T} > 26 GeV, $|\eta|$ < 2.4 [muon] and p_{T} > 30 GeV, $|\eta|$ < 2.5 [electron]

- p_T > 25 GeV, |η| < 2.4 [Jets]
- E_T^{miss} > 20 GeV
- At least 2 b-tagged jet
 (CSVv2 tagger with medium work point)

JINST 13 (2018) no.05, P05011

Back up: $H^{\pm} \rightarrow tb$ Leptonic

mmon to 1ℓ and 2ℓ	$\begin{array}{c} H_{\rm T} \\ p_{\rm Tb} \\ p_{\rm T}^{\rm miss} \\ \min m(\ell, b) \\ \max \Delta \eta(b, b) \\ \min \Delta R(b, b) \\ p_{\rm T} - \langle {\rm CSV} \rangle \end{array}$	Scalar sum of the jet transverse momenta Largest p_T among the b-tagged jets Missing transverse momentum Minimum invariant mass between the lepton and the b-tagged jet Maximum pseudorapidity separation between b-tagged jet pairs Minimum separation between b-tagged jet pairs p_T weighted average of the combined secondary vertex discrimina- tor of the non b tagged jets
Ŭ	FW_2	Second Fox–Wolfram moment
	centrality	Ratio of the sum of the $p_{\rm T}$ and the total energy of all jets
1ℓ	m_{jjj}	Invariant mass of the jet system composed by the first three jets ranked in $n_{\rm T}$
	$m_{\rm T}(\ell, \vec{p}_{\rm T}^{\rm miss})$	Transverse mass of the system constituted by the lepton and the $\vec{v}_{T}^{\text{miss}}$
	$\Delta R(\ell, bb)$	Distance between the b-tagged jet pair with the smallest ΔR separation and the lepton
	$\langle \Delta R(\mathbf{b},\mathbf{b}) \rangle$	Average separation between b-tagged jet pairs
2ℓ	N _{jets}	Number of selected jets
	$N_{\rm bjets}$	Number of selected b-tagged jets
	$\Delta R(\ell, b)$	Distance between the lepton and the b-tagged jet with largest trans- verse momenta
	$p_{\mathrm{T}\ell}$	Largest $p_{\rm T}$ between the leptons
	$\frac{p_{\mathrm{T}\ell_1} - p_{\mathrm{T}\ell_2}}{p_{\mathrm{T}\ell_1} + p_{\mathrm{T}\ell_2}}$	Lepton $p_{\rm T}$ asymmetry
	$m(\ell,b)$	Invariant mass of the lepton+b-tagged jet system with the largest $p_{\rm T}$
	mmin	(top quark cancillate) The smallest of the transverse masses constructed with the lead-
	mΤ	ing b-tagged jet and each of the two W boson hypotheses: min $[m_{\rm T}({\rm b}, p_{\rm T\ell 1} + \vec{p}_{\rm T}^{\rm miss}), m_{\rm T}({\rm b}, p_{\rm T\ell 2} + \vec{p}_{\rm T}^{\rm miss})]$

Back up: $H^{\pm} \rightarrow tb$ Hadronic

Combined with leptonic and hadronic final states

Back up: Charged Higgs Decay to Bosons

2000

137 fb⁻¹ (13 TeV) $^{\tt H}_{\tt H}$ $W^{\pm}W^{\pm}$ Variable WZ CMS 3 leptons, $p_{\rm T} > 25/10/20 \,{\rm GeV}$ 2 leptons, $p_{\rm T} > 25/20 \,{\rm GeV}$ Leptons 0.8 $p_{\rm T}^{\rm J}$ >50/30 GeV >50/30 GeV Observed >15 GeV (ee) $< 15 \, \text{GeV}$ $|\mathbf{m}_{\ell\ell} - m_{\mathbf{Z}}|$ 68% expected $>20 \, \text{GeV}$ 95% expected $m_{\ell\ell}$ 0.6 Γ(H_)/*m*(H_) > 0.1 >100 GeV $m_{\ell\ell\ell}$ $p_{\mathrm{T}}^{\mathrm{miss}}$ >30 GeV >30 GeV 0.4 Required Required b jet veto Required Required $\tau_{\rm h}$ veto $\max(z_{\ell}^*)$ < 0.75<1.0 0.2 >500 GeV >500 GeV m_{ij} >2.5 >2.5 $|\Delta \eta_{ii}|$ 500 1000 1500 m_{H₌} [GeV]

Backgrounds are divided in three classes:

- ✓ WW and WZ measured on the fly
- ✓ Non prompt / Fakes from data CR
- ✓ Prompt irreducible from simulations:
 - ✓ Measured in the CR with ZZ and tZq

Diboson Transverse mass

$$m_{\mathrm{T}}^{\mathrm{VV}} = \sqrt{\left(\sum_{i} E_{i}\right)^{2} - \left(\sum_{i} p_{z,i}\right)^{2}}$$

 E_i and $p_{z,i}$ are the energies and longitudinal components of the momenta of the leptons and neutrinos from the decay of the gauge bosons