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Introduction

Dark Matter (DM):

• Evidence from many different length scales

• Five times more abundant than ordinary matter

• Cold (warm?) and (only?) gravitationally interacting

• Weakly interacting massive particles (WIMPs): “miracle”

Neutrinos:

• (At least two) Standard Model (SM) neutrinos have mνi 6= 0

• Neither cold nor more than small fraction (0.5–1.6%) of Ωc
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Observational evidence for dark matter
MK, M. Pohl, G. Sigl, Prog. Nucl. Part. Phys. 85 (2015) 1
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Neutrino masses and mixings

Atmospheric and solar neutrino oscillations: [PDG 2021]

• sin2(θ12) = 0.307± 0.013

• ∆m2
21 = (7.53± 0.18)× 10−5 eV2

• sin2(θ23) = 0.546± 0.021 (NO) [Favored by T2K and NOνA]

• ∆m2
32 = (2.453± 0.033)× 10−3 eV2 (NO)

• sin2(θ13) = (2.20± 0.07)× 10−2

• δ = 1.36+0.20
−0.16 π rad [MINOS, T2K and NOνA]

Absolute neutrino mass scale:

• Minimal allowed value:
∑

i mνi > 0.06 eV

• Quasi-degenerate regime: mνi > 0.2 eV [KATRIN sensitivity goal]

• Current upper limit: mνi < 1.1 eV [KATRIN Coll., PRL 123 (2019) 221802]

• Cosmology limit:
∑

i mνi < 0.12 eV [Planck Coll., AA 641 (2020) A6 and C4(E)]
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An intriguing connection: Linking DM to neutrinos
“Scotogenic” (= created from dark matter) models:

• Radiative seesaw: Mass generation at one (or more) loop(s)

• At least one particle in the loop can be DM

Classification of one-loop realizations: [D. Restrepo et al., JHEP 1311 (2013) 011]
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Figure 1. One-loop contributions to the neutrino mass in models T1-1 (upper left), T1-2 (upper

right), T1-3 (lower left) and T3 (lower right).

under a Z2 symmetry to stabilize the dark matter and (in some cases) to prevent tree-level

contributions to neutrino masses. All one-loop models connecting neutrino masses to dark

matter with at most four additional fields have been classified [21] following the notation of

a systematic study of the d = 5 Weinberg operator at one-loop order [22]. The classification

has recently been extended to two loops [23] following Ref. [24] (cf. also Sec. 4.7 in [25]).

Apart from the models mentioned above, which all belong to the one-loop topology

T3 with one quartic scalar vertex as defined in Refs. [21, 22] and as shown in Fig. 1 (lower

right), several models with other topologies have also been studied in the past. In addition

to the topology label X in TX-Y, they have have been labeled - when applicable - according

to the number of internal fermion lines Y. They include models T1 with box topology such

as a model of topology T1-1 with three scalars, two of which are equivalent, and one fermion

(Fig. 1, upper left) [26], and a model of topology T1-3 with one scalar and three fermions

(Fig. 1, lower left) [27–29]. In both cases, the lightest scalar was assumed to represent the

dark matter, constraints from the Higgs and neutrino sectors and the relic density were

imposed, and their phenomenology, in particular of lepton-flavour violating processes, has

been studied. In this paper, we study a model of topology T1-2 with two scalars and two

fermions (Fig. 1, upper right). A general discussion of this topology, without establishing

the particle content of specific models, has been presented in Ref. [30]. To complete the list,

note that models of topology T2 can be discarded on dimensional arguments, since they

involve mass-suppressed quartic vertices of two fermions and two scalars, while models of

T4, T5 and T6 always have tree-level contributions to neutrino masses and thus no obvious

– 2 –

Properties:

• Up to 4 new fields, odd under Z2 (→ no tree, DM stability)

• Singlets of SU(3)C , singlets/doublets/triplets of SU(2)L
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The scotogenic model (1)
E. Ma, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225]

Left-handed SM lepton doublets: Lα (α = 1, 2, 3)

New dark (Z2-odd) particle content:

• (Inert) complex Higgs doublet (η+, η0) with 〈η0〉 = 0 (Z2)

• 3 generations of fermion singlets (sterile neutrinos, Ni )

DM candidate: Lightest neutral fermion Ni (or scalar)

Lagrangian (apart from kinetic terms):

LN = −mNi

2
NiNi + yiα(η†Lα)Ni + h.c.− V

Neutrino masses generated at 1 loop by 3×3 Yukawa matrices yiα

Perturbativity: |yiα|2 < 4π
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The scotogenic model (2)
E. Ma, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225]

Complex SM Higgs doublet: (φ+, φ0) with 〈φ0〉 = 246 GeV/
√

2

Scalar potential (∼ 2HDM, breaking SU(2)L ×U(1)Y → U(1)em.):

V = m2
φφ
†φ+ m2

ηη
†η +

λ1
2

(
φ†φ
)2

+
λ2
2

(
η†η
)2

+ λ3

(
φ†φ
)

(
η†η
)

+ λ4

(
φ†η
)(

η†φ
)

+
λ5
2

[(
φ†η
)2

+
(
η†φ
)2]

Vacuum stability:

λ1 > 0, λ2 > 0, λ3 > −
√
λ1λ2,

λ3 + λ4 − |λ5| > −
√
λ1λ2

Perturbativity: |λ2,3,4,5| < 4π

Parameters:
• mφ, λ1 fixed by 〈φ0〉, m2

h = 2λ1〈φ0〉2 = −2m2
φ = (125 GeV)2

• Since 〈η0〉 = 0, λ2 induces only self-interactions and decouples
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The scotogenic model (3)
E. Ma, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225]

Scalar masses:

m2
η+ = m2

η + λ3〈φ0〉2,
m2

R = m2
η + (λ3 + λ4 + λ5) 〈φ0〉2,

m2
I = m2

η + (λ3 + λ4 − λ5) 〈φ0〉2,

where η0 = (ηR + iηI )/
√

2 and

m2
R −m2

I = 2λ5〈φ0〉2

is naturally small (λ5 = 0 implies L conservation and mνi = 0).
[J. Kubo, E. Ma, D. Suematsu, PLB 642 (2006) 18]

We scan over |λ5| ∈ [10−12; 10−8]. [A. Vicente, C. Yaguna, JHEP 02 (2015) 144]

8 / 20



Introduction The scotogenic model Experimental constraints Numerical results Summary

Experimental constraints (1)
LEP limit on charged particle masses: [OPAL Coll., PLB 572 (2003) 8]

• For λ3 < 1, implies lower limit on mη ∈ [0.1; 10] TeV
• mη then dominates over 〈φ0〉
• λ3,4 then subdominant and mη± ' mR,I

We use the same mass range for mNi
(but lightest mNi

< mR,I ).

SM neutrino mass matrix: (mν)αβ = (yTΛy)αβ with

Λi =
mNi

32π2

[
m2

R

m2
R −m2

Ni

log

(
m2

R

m2
Ni

)
− (R → I )

]
.

Diagonalized by the PMNS matrix U with

UT mν U = m̂ν ≡ diag(m1,m2,m3).

Then, for a given set of masses in Λi , the Yukawa couplings

y =
√

Λ
−1

R
√
m̂νU

†

are constrained up to rotation matrix R. [J. Casas, A. Ibarra, NPB 618 (2001) 171]
9 / 20



Introduction The scotogenic model Experimental constraints Numerical results Summary

Experimental constraints (2)
Lepton flavor violation:

BR(µ→ eγ) < 4.2 · 10−13 [MEG] (2 · 10−15 [MEG])

BR(µ→ 3e) < 1.0 · 10−12 [SINDRUM] (10−16 [Mu3e])

CR(µ− e,Ti) < 4.3 · 10−12 [SINDRUM II] (10−18 [PRIME])

(1)

• Depend on mη+ , mNi
, yiα through form factors, box diagrams

• Calculated with SPheno 4.0.3 [W. Porod, F. Staub, CPC 183 (2012) 2458]

Relic density:

• Standard freeze-out, Ni annihilate to SM leptons Lα via yiα,iβ
• Ωh2 = 0.12± 0.02 (theor.) [Planck Coll., AA 641 (2020) A6 and C4(E)]

• Calculated with micrOMEGAs 5.0.8 [G. Belanger et al., CPC 231 (2018) 173]

Direct detection:

• Occurs only at one loop
• Currently beyond experimental reach
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Numerical results

Full numerical scan over the parameter space:

• 4 masses: mNi
, mη

• 3 couplings: λ3,4,5
• 3 rotation angles: θi
• mν1,3 ∈ [4× 10−3; 2] eV (NO, IO)

Absolute neutrino mass scale:

• Minimal allowed value:
∑

i mνi > 0.06 eV

• Quasi-degenerate regime: mνi > 0.2 eV [KATRIN sensitivity goal]

• Current upper limit: mνi < 1.1 eV [KATRIN Coll., PRL 123 (2019) 221802]

• Cosmology limit:
∑

i mνi < 0.12 eV [Planck Coll., AA 641 (2020) A6 and C4(E)]
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Ratios of Yukawa coupling eigenvalues

Large/small variation for small/large mν1 →Rotation angles unimportant.
lα → lβγ, 3lβ impose upper limits on yα,β → Ratios further constrained.

Relic density requires sizable yα,β → |yβ/yα| ∼ 1 for all mν1 (NO and IO)
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Neutrino mass matrix and dark sector–Higgs coupling
S. Fraser et al. / Physics Letters B 737 (2014) 280–282 281

Fig. 2. One-loop generation of seesaw neutrino mass with heavy Majorana N .

a different mass hierarchy. If m1, m2 ! mN and m2
1/mN ! mS !

m1, then a lopsided seesaw [14] occurs with mν " −m2
2/mN as 

in the canonical seesaw, but ν − S mixing may be significant, i.e. 
m1m2/mSmN , whereas ν − N mixing is the same as in the canon-
ical seesaw, i.e. 

√
mν/mN . In the inverse seesaw, ν − N mixing 

is even smaller, i.e. mν/m2, but ν − S mixing is much larger, i.e. 
m2/m1, which is only bounded at present by about 0.03 [15]. In 
the double seesaw, the effective mass of N is m2

1/mS , so ν − N
mixing is also 

√
mν/mN . Here mS % mN , so the ν − S mixing is 

further suppressed by m1/mS .
In the original scotogenic model [7], neutrino mass is radia-

tively induced by heavy neutral Majorana singlet fermions N1,2,3 as 
shown in Fig. 2. However, they may be replaced by Dirac fermions. 
In that case, a U (1)D symmetry may be defined [16], under which 
η1,2 transform oppositely. If Z2 symmetry is retained, then a radia-
tive inverse seesaw neutrino mass is also possible [17,18]. We dis-
cuss here instead the new mechanism of Fig. 1, based on the third 
one-loop realization of neutrino mass first presented in Ref. [2]. 
The smallness of mN , i.e. the Majorana mass of NL , may be natu-
rally connected to the violation of lepton number by two units, as 
in the original inverse seesaw proposal using Eq. (1). It may also 
be a two-loop effect as first proposed in Ref. [19], with a number 
of subsequent papers by other authors, including Refs. [20–22].

In our model, lepton number is carried by (E0, E−)L,R as well 
as NL . This means that the Yukawa term N̄L(E0

Rφ0 − E−
R φ+) is 

allowed, but not NL(E0
Lφ

0 − E−
L φ+). In the 3 ×3 mass matrix span-

ning (Ē0
R , E0

L , NL), i.e.

ME,N =




0 mE mD

mE 0 0

mD 0 mN



 , (3)

mE comes from the invariant mass term (Ē0
R E0

L + E+
R E−

L ), mD comes 
from the Yukawa term given above connecting NL with E0

R through 
〈φ0〉 = v , and mN is the soft lepton-number breaking Majorana 
mass of NL . Assuming that mN ! mD , mE , the mass eigenvalues of 
ME,N are

m1 = m2
EmN

m2
E + m2

D

, (4)

m2 =
√

m2
E + m2

D + m2
DmN

2(m2
E + m2

D)
, (5)

m3 = −
√

m2
E + m2

D + m2
DmN

2(m2
E + m2

D)
. (6)

In the limit mN → 0, E0
R pairs up with E0

L cos θ + NL sin θ to form a 
Dirac fermion of mass 

√
m2

E + m2
D , where sin θ = mD/

√
m2

E + m2
D . 

This means that the one-loop integral of Fig. 1 is well approxi-
mated by

mν = f 2m2
DmN

16π2(m2
E + m2

D − m2
s )

[
1 − m2

s ln((m2
E + m2

D)/m2
s )

(m2
E + m2

D − m2
s )

]
. (7)

This expression is indeed of the form expected of the inverse see-
saw.

The radiative mechanism of Fig. 1 is also suitable for supporting 
a discrete flavor symmetry, such as Z3. Consider the choice

(νi, li)L ∼ 1,1′,1′′, s1 ∼ 1,

(s2 + is3)/
√

2 ∼ 1′, (s2 − is3)/
√

2 ∼ 1′′, (8)

with mass terms m2
s s2

1 + m′ 2
s (s2

2 + s2
3), then the induced 3 × 3 neu-

trino mass matrix is of the form

Mν =




fe 0 0

0 fµ 0

0 0 fτ








I(m2

s ) 0 0

0 0 I(m′ 2
s )

0 I(m′ 2
s ) 0





×




fe 0 0

0 fµ 0

0 0 fτ





=




f 2
e I(m2

s ) 0 0

0 0 fµ fτ I(m′ 2
s )

0 fµ fτ I(m′ 2
s ) 0



 , (9)

where I is given by Eq. (7) with f 2 removed. Let liR ∼ 1, 1′, 1′′ , 
then the charged-lepton mass matrix is diagonal using just the one 
Higgs doublet of the standard model, in keeping with the recent 
discovery [23,24] of the 125 GeV particle. To obtain a realistic neu-
trino mass matrix, we break Z3 softly, i.e. with an arbitrary 3 × 3
mass-squared matrix spanning s1,2,3, which leads to



1 0 0

0 1/
√

2 i/
√

2

0 1/
√

2 −i/
√

2



 O T





I(m2
s1) 0 0

0 I(m2
s2) 0

0 0 I(m2
s3)





× O




1 0 0

0 1/
√

2 1/
√

2

0 i/
√

2 −i/
√

2



 , (10)

where O is an orthogonal matrix but not the identity, and there 
can be three different mass eigenvalues ms1,s2,s3 for the s1,2,3 sec-
tor. The assumption of Eq. (8) results in Eq. (10) and allows the 
following interesting pattern for the neutrino mass matrix Mν . 
The Yukawa couplings fe,µ,τ may be rendered real by absorbing 
their phases into the arbitrary relative phases between E0

R and 
νe,µ,τ . If we further assume fµ = fτ , then Mν is of the form [25]

Mν =




A C C∗

C D∗ B

C∗ B D



 , (11)

where A and B are real. Note that this pattern is protected 
by a symmetry first pointed out in Ref. [26], i.e. e → e and 
µ − τ exchange with CP conjugation, and appeared previously 
in Refs. [27,28]. As such, it is also guaranteed to yield maxi-
mal νµ − ντ mixing (θ23 = π/4) and maximal CP violation, i.e. 
exp(−iδ) = ±i, whereas θ13 may be nonzero and arbitrary. Our 
scheme is thus a natural framework for this possibility. Further, 
from Eq. (7), it is clear that it is also a natural framework for quasi-
degenerate neutrino masses as well. Let

F (x) = 1
1 − x

[
1 + x ln x

1 − x

]
, (12)

where x = m2
s /(m

2
E + m2

D), then Eq. (7) becomes

mν = f 2m2
DmN

(m2
E + m2

D)
F (x). (13)

When λ5 � 1 and m2
R ≈ m2

I , neutrino mass matrix simplifies to

(mν)αβ ≈ 2λ5〈φ0〉2
3∑

i=1

yiαyiβmNi

32π2(m2
R,I −m2

Ni
)

×
[

1 +
m2

Ni

m2
R,I −m2

Ni

log

(
m2

Ni

m2
R,I

)]
,

i.e. it is not only bilinear in y , but also linear in λ5.

Above constraints allow us to make this explicit for the eigenvalue.
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Absolute neutrino mass and dark sector–Higgs coupling (1)

Lepton flavor violation requires small Yukawa couplings → Large λ5.
Relic density requires large Yukawa couplings → Small λ5.

Overlap region is indeed linear in lightest neutrino mass eigenvalue mν1 .
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Absolute neutrino mass and dark sector–Higgs coupling (2)

Degenerate/KATRIN regime:

|λ5| =

{
(3.08± 0.05)× 10−9 mν1/eV (NO)
(3.11± 0.06)× 10−9 mν1/eV (IO)

.

Below mν1 = 0.052 eV, heaviest neutrino mass dominates and

|λ5| =

{
(1.6± 0.7)× 10−10 (NO)
(1.7± 1.5)× 10−10 (IO)

becomes independent of mν1 . Sign of λ5 is arbitrary.

The dark sector–Higgs boson coupling λ5 can therefore be
predicted, once the absolute neutrino mass scale is known.
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Yukawa coupling of the lightest neutrino (1)
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Fit: |y1| = 0.078(21)
√
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1

Square root fit (red curve, grey shaded area) at 90% C.L.

Temperature scale: Ratio of neutral scalar over DM mass.
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Yukawa coupling of the lightest neutrino (2)

Reminder:

(mν )αβ ≈ 2λ5〈φ0〉2
3∑

i=1

yiαyiβmNi

32π2(m2
R,I
− m2

Ni
)

1 +
m2

Ni

m2
R,I
− m2

Ni

log

 m2
Ni

m2
R,I



With mν1/|λ5| fixed, Yukawas are correlated with DM/scalar mass.

Relic density constrains mR,I/mN1 ∼ 1.5.

Leading term in the neutrino mass matrix is then ∝ |y1|2/mN1 .

Other dark fermions N2,3 are significantly heavier.

Fit result:

|y1| =

{
(0.078± 0.021)

√
mN1/GeV (NO)

(0.081± 0.012)
√

mN1/GeV (IO)
.

If DM mass is known, we can predict its coupling to SM leptons.
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Complementarity of KATRIN and LFV experiments

10−2 10−1 100

mν1 [eV]

10−17

10−16

10−15

10−14

10−13

10−12

B
R

BR(µ→ eγ)

BR(µ→ 3e)

Current limit: BR(µ→ 3e) < 1.0× 10−12

Current limit: BR(µ→ eγ) < 4.2× 10−13

Future limit: BR(µ→ eγ) < 2.0× 10−15

Future limit: BR(µ→ 3e) < 1.0× 10−16

KATRIN limit: meff
νe < 1.1 eV

KATRIN sensitivity goal: meff
νe < 0.2 eV

Current (full) and future (dashed) experimental limits.
µ→ eγ stronger than µ→ 3e, but this might change soon.

Fermion DM space can be almost completely tested.
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Summary (1)
Conclusions:

• Scotogenic model is simplest radiative seesaw model with DM

• Fermion DM parameter space now severely constrained

• KATRIN measurement of mν1 would directly predict λ5
• Together with LFV would test complete parameter space

• Measurement of mN1 would predict coupling to SM leptons
S. Fraser et al. / Physics Letters B 737 (2014) 280–282 281

Fig. 2. One-loop generation of seesaw neutrino mass with heavy Majorana N .

a different mass hierarchy. If m1, m2 ! mN and m2
1/mN ! mS !

m1, then a lopsided seesaw [14] occurs with mν " −m2
2/mN as 

in the canonical seesaw, but ν − S mixing may be significant, i.e. 
m1m2/mSmN , whereas ν − N mixing is the same as in the canon-
ical seesaw, i.e. 

√
mν/mN . In the inverse seesaw, ν − N mixing 

is even smaller, i.e. mν/m2, but ν − S mixing is much larger, i.e. 
m2/m1, which is only bounded at present by about 0.03 [15]. In 
the double seesaw, the effective mass of N is m2

1/mS , so ν − N
mixing is also 

√
mν/mN . Here mS % mN , so the ν − S mixing is 

further suppressed by m1/mS .
In the original scotogenic model [7], neutrino mass is radia-

tively induced by heavy neutral Majorana singlet fermions N1,2,3 as 
shown in Fig. 2. However, they may be replaced by Dirac fermions. 
In that case, a U (1)D symmetry may be defined [16], under which 
η1,2 transform oppositely. If Z2 symmetry is retained, then a radia-
tive inverse seesaw neutrino mass is also possible [17,18]. We dis-
cuss here instead the new mechanism of Fig. 1, based on the third 
one-loop realization of neutrino mass first presented in Ref. [2]. 
The smallness of mN , i.e. the Majorana mass of NL , may be natu-
rally connected to the violation of lepton number by two units, as 
in the original inverse seesaw proposal using Eq. (1). It may also 
be a two-loop effect as first proposed in Ref. [19], with a number 
of subsequent papers by other authors, including Refs. [20–22].

In our model, lepton number is carried by (E0, E−)L,R as well 
as NL . This means that the Yukawa term N̄L(E0

Rφ0 − E−
R φ+) is 

allowed, but not NL(E0
Lφ

0 − E−
L φ+). In the 3 ×3 mass matrix span-

ning (Ē0
R , E0

L , NL), i.e.

ME,N =




0 mE mD

mE 0 0

mD 0 mN



 , (3)

mE comes from the invariant mass term (Ē0
R E0

L + E+
R E−

L ), mD comes 
from the Yukawa term given above connecting NL with E0

R through 
〈φ0〉 = v , and mN is the soft lepton-number breaking Majorana 
mass of NL . Assuming that mN ! mD , mE , the mass eigenvalues of 
ME,N are

m1 = m2
EmN

m2
E + m2

D

, (4)

m2 =
√

m2
E + m2

D + m2
DmN

2(m2
E + m2

D)
, (5)

m3 = −
√

m2
E + m2

D + m2
DmN

2(m2
E + m2

D)
. (6)

In the limit mN → 0, E0
R pairs up with E0

L cos θ + NL sin θ to form a 
Dirac fermion of mass 

√
m2

E + m2
D , where sin θ = mD/

√
m2

E + m2
D . 

This means that the one-loop integral of Fig. 1 is well approxi-
mated by

mν = f 2m2
DmN

16π2(m2
E + m2

D − m2
s )

[
1 − m2

s ln((m2
E + m2

D)/m2
s )

(m2
E + m2

D − m2
s )

]
. (7)

This expression is indeed of the form expected of the inverse see-
saw.

The radiative mechanism of Fig. 1 is also suitable for supporting 
a discrete flavor symmetry, such as Z3. Consider the choice

(νi, li)L ∼ 1,1′,1′′, s1 ∼ 1,

(s2 + is3)/
√

2 ∼ 1′, (s2 − is3)/
√

2 ∼ 1′′, (8)

with mass terms m2
s s2

1 + m′ 2
s (s2

2 + s2
3), then the induced 3 × 3 neu-

trino mass matrix is of the form

Mν =




fe 0 0

0 fµ 0

0 0 fτ








I(m2

s ) 0 0

0 0 I(m′ 2
s )

0 I(m′ 2
s ) 0





×




fe 0 0

0 fµ 0

0 0 fτ





=




f 2
e I(m2

s ) 0 0

0 0 fµ fτ I(m′ 2
s )

0 fµ fτ I(m′ 2
s ) 0



 , (9)

where I is given by Eq. (7) with f 2 removed. Let liR ∼ 1, 1′, 1′′ , 
then the charged-lepton mass matrix is diagonal using just the one 
Higgs doublet of the standard model, in keeping with the recent 
discovery [23,24] of the 125 GeV particle. To obtain a realistic neu-
trino mass matrix, we break Z3 softly, i.e. with an arbitrary 3 × 3
mass-squared matrix spanning s1,2,3, which leads to



1 0 0

0 1/
√

2 i/
√

2

0 1/
√

2 −i/
√

2



 O T





I(m2
s1) 0 0

0 I(m2
s2) 0

0 0 I(m2
s3)





× O




1 0 0

0 1/
√

2 1/
√

2

0 i/
√

2 −i/
√

2



 , (10)

where O is an orthogonal matrix but not the identity, and there 
can be three different mass eigenvalues ms1,s2,s3 for the s1,2,3 sec-
tor. The assumption of Eq. (8) results in Eq. (10) and allows the 
following interesting pattern for the neutrino mass matrix Mν . 
The Yukawa couplings fe,µ,τ may be rendered real by absorbing 
their phases into the arbitrary relative phases between E0

R and 
νe,µ,τ . If we further assume fµ = fτ , then Mν is of the form [25]

Mν =




A C C∗

C D∗ B

C∗ B D



 , (11)

where A and B are real. Note that this pattern is protected 
by a symmetry first pointed out in Ref. [26], i.e. e → e and 
µ − τ exchange with CP conjugation, and appeared previously 
in Refs. [27,28]. As such, it is also guaranteed to yield maxi-
mal νµ − ντ mixing (θ23 = π/4) and maximal CP violation, i.e. 
exp(−iδ) = ±i, whereas θ13 may be nonzero and arbitrary. Our 
scheme is thus a natural framework for this possibility. Further, 
from Eq. (7), it is clear that it is also a natural framework for quasi-
degenerate neutrino masses as well. Let

F (x) = 1
1 − x

[
1 + x ln x

1 − x

]
, (12)

where x = m2
s /(m

2
E + m2

D), then Eq. (7) becomes

mν = f 2m2
DmN

(m2
E + m2

D)
F (x). (13)

Reasons:

• Constraints inherent in neutrino mass one-loop diagram

• Topologically similar to penguin diagram mediating LFV

• Also similar to DM annihilation, when cut on fermion line
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Caveats:

• Correlations absent for scalar DM, when cut on scalar lines

• Scalar doublets can also annihilate into weak gauge bosons

• New constraints from inelastic scattering in the Sun
[T. de Boer, MK et al., JCAP 08 (2021) 038]

• Coannihilations studied elsewhere [MK, D. Restrepo et al., JCAP 04 (2013) 044]

Outlook:

• Observations generalize to other scotogenic models

• Examples: Fermion triplet, singlet-doublet scalars

• When LFV is weaker, must also consider collider constraints
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