

TWENTIETH LOMONOSOV CONFERENCE August, 19-25, 2021 ON ELEMENTARY PARTICLE PHYSICS MOSCOW STATE UNIVERSITY

Neutrino Telescope in Lake Baikal: Recent Status and Future Perspectives

Rastislav Dvornický on behalf of the Baikal-GVD collaboration

JINR, Dubna, Russia Comenius University in Bratislava, Slovakia

Collaboration: 10 institutions, ~70 members

- 1. Institute for Nuclear Research, Moscow, Russia.
- 2. Joint Institute for Nuclear Research, Dubna, Russia.
- 3. Irkutsk State University, Irkutsk, Russia.
- 4. Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia.
- 5. Nizhny Novgorod State Technical University, Russia.
- 6. St. Petersburg State Marine University, Russia.
- 7. EvoLogics Gmbh., Berlin, Germany.
- 8. Institute of Experimental and Applied Physics, CTU in Prague, Czech Rep.
- 9. Comenius University, Bratislava, Slovakia.
- 10. Krakow Institute for Nuclear Research, Krakow, Poland

Baikal-GVD telescope (under construction)

Objectives:

- 1 km³-scale 3D-array of photo sensors
- flexible structure allowing an upgrade and/or a rearrangement of the main building blocks (clusters)
- high sensitivity and resolution of neutrino energy, direction, and flavour content

Physics Goals:

- Investigate Galactic and extragalactic neutrino "point sources" in energy range > 100 TeV
- Diffuse neutrino flux energy spectrum, local, and global anisotropy, flavour content
- Sporadic cosmic sources (GRB, ...)
- Dark matter and exotic particles search

a tool for multi-messenger astronomy

Baikal-GVD site

Location: 104°25' E; 51°46' N

Shore station

Baikal'sk Workshop & Storage facilities

- Location ~ 3.6 km from shore
- Stable ice cover during Feb.-April: detector deployment and maintenance
- •Baikal water properties: absorption length ~ 22-24 m scattering length ~ 30-50 m low background 15-60 kHz PMT R7081R7081-100 Ø10"
- •Absence of high luminosity bursts from biology and K⁴⁰ background
- •The constant depth of the lake 1366-1367 m

Baikal ambient light field

- The *increases* of the luminescence activity intermitting periods of relatively *stable* optical *background* in 2018-2021.
- The luminescent layer propagated upwards with the maximal speed of 28 m/day in Jan. 2021.

Baikal-GVD optical module

PMT Hamamatsu R7081-100 $\emptyset = 10$ inch QE $\approx 35\%$ @ 400nm TTS ~ 3.5 ns Gain $\sim 10^7$ Dark current $\sim 8-12$ kHz

Optical modules assemble (JINR Dubna)

OM
- Mu-metal cage
- PMT
- Optical gel

Pressure-resistant glass sphere VITROVEX (17") The new facility allows to produce and test up to 12 OM per day.

Baikal-GVD section of OMs

Section

- 12 OMs, 15 m spacing, all PMTs look downward.
- 2 acoustic modules (AM) of the positioning system.

Section control module

- ADC12 ch, 200 MHz sampling;
- pulse form measuring.
- Trigger logic, events forming, data filtration.
- Data transmission: shDSL ethernet extender:
 5.7 Mbit/s

Optical module

Section control module

Acoustic module

Baikal-GVD cluster

Cluster: 288 OMs

- 24 Sections on 8 strings,
- Cluster DAQ center
- Shore cable: 6 7 km
- Depths from 750 to 1275 m

Cluster DAQ

- Trigger: 1.5 & 4 p.e. of adjacent optical modules.
- Maximum trigger rate: ~200 Hz.
- Data transferring: shDSL Ethernet extenders: 5.7 Mbit/s
- Inter-section synchronization by trigger: ~2 ns accuracy.

Automatic data processing

- 40 Gb/cluster/day send and stored at the shore centre
- 300 Mbit/s radio link over the lake to Baikal'sk
- Data send to JINR servers over the internet
- Data stored on EOS
- Recently (2021), completely automatic data processing (100s of cores) + alert production system

- Raw waveforms stored → possible reprocessing
- Pulse extractions
- White Rabbit synchronization of independent cluster data transfers
- Data Quality Monitoring

Calibration devices

Section calibration: 2 LEDs in each OM, 470 nm, 1 - 10⁸ ph., 5 ns.
String calibration: LED beacons in 12 OMs of a cluster.
Cluster calibration: 2 Lasers per station, 532 nm, 10¹² - 10¹⁵ ph., 1 ns.

Calibration accuracy ~ 2 ns

Acoustic positioning system

- OM drift can reach tens of meters, depending on season and elevation.
- OM coordinates are acquired via an acoustic positioning system.
- It consists of a network of acoustic modems (AMs) installed along strings
- 4 AMs per string in a standard configuration.
- OM coordinates are obtained by interpolating AM coordinates, error < 0.2 m

Baikal-GVD construction status and schedule

Status 2021: 8 clusters, 3 laser stations, 2 experimental strings

Deployment schedule

Year	Number of clusters	Number of OMs
2016	1	288
2017	2	576
2018	3	864
2019	5	1440
2020	7	2016
2021	8	2304
2022	10	2880
2023	12	3456
2024	14	4032

Effective volume 2021: 0.40 km³ (cascade mode)

Selected results

Muons detection mode: atmospheric neutrinos

- > Multi-messenger studies
- Cascades detection mode: HE cascades

Muons – track analysis

Present status: technique for neutrino events selecting and reconstructing is currently being developed.

Reconstruction: noise hit suppression and fit track with quality function:

$$Q(x, y, z, \theta, \phi) = \chi_t^2 + Q_r$$

Data sample: data taken between Apr 1 and Jun 30, 2019; 5 clusters.

Event selection: 8 hit OMs on at least two detector strings.

Neutrino selection cuts: - Zenith angle >120° - Fit quality Q/ndf < 32 - Visible track length L >75 m - Average distance to OMs < 18 m - Charge of all hits > 18 p.e. - Estimated zenith angle error < 2°

Muon neutrino: single-cluster analysis

- 9.8 million reconstructed events for the combined dataset from the 5 clusters.
- Single-cluster equivalent live time 323 days.

Multi-messenger studies

BAIKAL-GVD alerts

Since Sept. 2020: data processing with a delay of several hours. Nearest plans: HE alerts processing with delay less than tens of minutes.

ANTARES alerts

Since the end of Dec. 2018 Baikal-GVD follows ANTARES alerts. Processed **48** alerts, among which 3 possible coincidences were found in cascade mode within 5° and $\Delta T = \pm 1$ day and are under investigation with ANTARES.

IceCube alerts

Starting Sept. 2020 Baikal-GVD follows **IC alerts (GCN)**, **22** alerts. Upper limits at 90% c.l. on the neutrino fluence: ~1÷2 GeV cm⁻² for energy range 1TeV– 10PeV. E⁻² spectral behavior; equal fluence in all flavors.

Cascades detection with Baikal-GVD

0.02

0.01

0

5

10

15

Neutrino effective area for 7 GVD clusters

Energy resolution : $\delta E/E \sim 10\%-30\%$

Expected number of events in 7 GVD clusters from astrophysical neutrinos for 1 yr.

20

25

30

35

40

High energy cascades (data and MC)

Data from 2019-2020, live-time: 2915 days (in terms of one cluster)

MC atmospheric muons - Corsika 7.74, Sybill 2.3c, protons, E_p>100 TeV

Thanks to Jakob van Santen for modification of DYNSTACK CORSIKA.

72 events with E > 40 TeV and N_{hit} > 19

10 events with E > 100 TeV and N_{hit} >19: Energy distribution One upgoing cascade: E ≈ 91 TeV Cosine of zenith angle

Preliminary!

Final selection requirements:

Preliminary!

(N _{Type 2} = 0, $E_{rec} \ge 60$ TeV) or (N _{Type 2} = 1, $E_{rec} \ge 100$ TeV)

7 data events have been selected.

4 events are expected from atm. muons

5 events are expected from E^{-2.46} astrophys. flux with IC normalization

Cumulative distributions of data and events from atm. muons and astrophys. flux after final cuts

Preliminary!

Parameters of 10 selected events (2018-2020)

	E, TeV	θ _{z,} degree	φ, degree	R.A.	Dec
GVD2018_354_N	105	37	331	118.2	72.5
GVD2018_383_N	115	73	112	35.4	1.1
GVD2018_656_N	398	64	347	55.6	62.4
GVD2019_112_N	1200	61	329	217.7	57.6
GVD2019_114_N	91	109	92	45.1	-16.7
GVD2019_663_N	83	50	276	163.6	34.2
GVD2019_153_N	129	50	321	33.7	61.4
GVD2020_175_N	110	71	185	295.3	-18.9
GVD2020_332_N	74	92	9	223.0	35.4
GVD2020_399_N	246	57	49	131.9	50.2

Sky map with 10 events

Small (large) circle stands for 68 % (95%) C.L.

Preliminary!

GVD_2019_112_N event

Preliminary!

- Energy E = 1 200 TeV (±30%)
- Distance from central string r = 91 m
- Zenith angle = 61°

Gamma sources nearby the event

Fermi sources in 5° circle: 1ES 1421+582 RBS 1409 2MASS J14363365+6149514 OQ 530 = J1419+5423 brightest radio-blazar (1.1 Jy) S4 1427+543 87GB 135720.6+555936 FIRST J150106.2+552750 FIRST J150229.0+555204

E> 30 GeV RBS 1409 BL Lac z=unknown. 1ES 1421+582 z=unknown. both with hard spectrum

Two close events at distance 10.3°: GVD_2018_656_N and GVD_2019_153_N

Sky map of Fermi sources

LSI +61 303 and the two events

LSI +61 303 – at 3.1° and 7.4° from GVD_2019_153_N and GVD_2018_656_N

LSI +61 303 – γ -ray active micro-quasar

Using PSFs of all 10 events chance probability to observe such configuration was estimated: $p-value = 0.007 \text{ or } 2.7 \sigma ! (conservative, preliminary!!!)$

Preliminary!

The first clear cascade event from the interaction of an upward moving electron- or a tau-neutrino at ~ 100 TeV

Contained event

Sky plot of γ-ray sources (D.Semikoz, A.Neronov)

91.2 TeV (from below) no good known sources in 3° PKS 0302-16 unknown type of source PMN J0301-1652 unknown type of source

GVD2019_1_114_N

Radio-loud blazars – promising neutrino sources

A. Plavin et al., ApJ 894, 101 (2020)A. Plavin et al., ApJ 908, 157 (2021)

GVD2019_1_114_N Radio blazar J0301-1812

Sky plot of radio-bright blazars nearby neutrino event

Light curves of J0301-1812 measured by RATAN-600

GVD2020_3_175_N

Radio blazar J1938-1749

Sky plot of radio-bright blazars nearby neutrino event

Light curves of J1938-1749 measured by OVRO

Acknowledgements

We sincerely thank to Y. Kovalev, A. Neronov, A. Plavin, D. Semikoz, and S. Troitsky who performed comparing of our results with astrophysical data.

Conclusions

➢ Baikal-GVD is now the largest neutrino telescope in the Northern Hemisphere: 0.4 km³ and still growing.

- ➢ Modular structure of the Baikal-GVD design allows a search for HE neutrinos and multi-messenger studies at the early phases of the array construction.
- ➢Observations of atmospheric neutrinos by Baikal-GVD agree with expectations, first astrophysics neutrino candidate events have been selected.

Future plans

Improvements in pulse extraction: Pulse fitting, Double Pulse identification, pulse separation

Alerts: Shorten the time from a few hours to a few tens of minutes

>Multi-cluster track reconstruction, search for high-energy starting events

Experimental strings with optical DAQ

► Increasing the effective volume about 2 clusters per winter expedition

GVD 2020 and extention

Thank you for your attention!

http://baikalgvd.jinr.ru