LINEAR e⁺e⁻ COLLIDERS – FUTURE HIGGS FACTORIES

20th Lomonosov Conference 19.08.-15.08.2021 VINCA Institute of Nuclear Sciences, University of Belgrade

OVERVIEW

- WHY HIGGS FACTORIES?
- LINEAR COLLIDERS
- DETECTOR CONCEPTS & TECHNOLOGIES
- HIGGS PHYSICS AT LINEAR COLLIDERS
- OUTLOOK

WHY HIGGS FACTORIES?

- Higgs discovery ended era of reductionism and symmetries in particle physics [1]
- Never seen before fundamental scalar is discovered, unique (with exception of gravity) in its self-coupling
- Higgs discovery opened several important questions of nature of relativistic vacuum:
 - How can we accommodate it in energy density of the Universe?
 - Why the Higgs is not enormously massive (even Planckian)?

$$(E_{V}) = \int d^{3}k \frac{1}{2} \sqrt{k^{2} + m_{B}^{2}} - \frac{1}{2} \sqrt{k^{2} + m_{F}^{2}}$$

$$= \int d^{3}k \frac{1}{2} \sqrt{k^{2} + m_{B}^{2}} - \frac{1}{2} \sqrt{k^{2} + m_{F}^{2}}$$

$$= \int d^{3}k \frac{1}{2} \sqrt{k^{2} + m_{B}^{2}} - \frac{1}{2} \sqrt{k^{2} + m_{F}^{2}}$$

$$= \int d^{3}k \frac{1}{2} \sqrt{k^{2} + m_{B}^{2}} - \frac{1}{2} \sqrt{k^{2} + m_{F}^{2}}$$

$$= \int d^{3}k \frac{1}{2} \sqrt{k^{2} + m_{B}^{2}} - \frac{1}{2} \sqrt{k^{2} + m_{F}^{2}}$$

$$= \int d^{3}k \frac{1}{2} \sqrt{k^{2} + m_{B}^{2}} - \frac{1}{2} \sqrt{k^{2} + m_{F}^{2}}$$

$$= \int d^{3}k \frac{1}{2} \sqrt{k^{2} + m_{B}^{2}} - \frac{1}{2} \sqrt{k^{2} + m_{F}^{2}}$$

$$= \int d^{3}k \frac{1}{2} \sqrt{k^{2} + m_{B}^{2}} - \frac{1}{2} \sqrt{k^{2} + m_{F}^{2}}$$

$$= \int d^{3}k \frac{1}{2} \sqrt{k^{2} + m_{B}^{2}} - \frac{1}{2} \sqrt{k^{2} + m_{F}^{2}}$$

$$= \int d^{3}k \frac{1}{2} \sqrt{k^{2} + m_{B}^{2}} - \frac{1}{2} \sqrt{k^{2} + m_{F}^{2}}$$

$$= \int d^{3}k \frac{1}{2} \sqrt{k^{2} + m_{B}^{2}} - \frac{1}{2} \sqrt{k^{2} + m_{F}^{2}}$$

$$= \int d^{3}k \frac{1}{2} \sqrt{k^{2} + m_{B}^{2}} - \frac{1}{2} \sqrt{k^{2} + m_{F}^{2}}$$

$$= \int d^{3}k \frac{1}{2} \sqrt{k^{2} + m_{F}^{2}} - \frac{1}{2} \sqrt{k^{2} + m_{F}^{2}}$$

$$= \int d^{3}k \frac{1}{2} \sqrt{k^{2} + m_{F}^{2}} - \frac{1}{2} \sqrt{k^{2} + m_{F$$

LIMITS, LIMITS,...

-

- No New Physics discovery at LHC
- With the LHC resolution to probe Higgs compositeness, the Higgs could be as elementary as pion. So, how pointlike is it?
- λ can be significantly enhanced in EW bariogenesis models. HL-LHC will probe λ with 50% uncertainty [2]

	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫L dt[fb	Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$\begin{array}{l} \widetilde{q}\widetilde{a}, \widetilde{q} \rightarrow g \widetilde{\xi}_{1}^{0} \\ \widetilde{q}\widetilde{a}, \widetilde{q} \rightarrow g \widetilde{\xi}_{1}^{0} \\ \widetilde{q}\widetilde{a}, \widetilde{g} \rightarrow g \widetilde{\xi}_{1}^{0} \\ \widetilde{q}\widetilde{g}\widetilde{a}, \widetilde{g} \rightarrow g \widetilde{q}\widetilde{g}\widetilde{a}, \widetilde{g}\widetilde{g}\widetilde{g}\widetilde{a}, \widetilde{g}\widetilde{g}\widetilde{g}\widetilde{a}, \widetilde{g}\widetilde{g}\widetilde{g}\widetilde{a}, \widetilde{g}\widetilde{g}\widetilde{g}\widetilde{g}\widetilde{a}, \widetilde{g}\widetilde{g}\widetilde{g}\widetilde{g}\widetilde{g}\widetilde{g}\widetilde{g}\widetilde{g}\widetilde{g}\widetilde{g}$	0 mono-jet 0 $ee, \mu\mu$ 3 e, μ 0 1-2 τ + D-1 ℓ 2 γ γ 0	2-6 jets 1-3 jets 2-6 jets 2-6 jets 2 jets 4 jets 7-11 jets 0-2 jets 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 14.7 36.1 36.1 36.1 36.1 36.1 36.1 20.3	710 GeV	.22 TeV m(t ²) < 2004W, m(1 ⁺ gen.4)→m(2 ⁺ gen.4) m(t ²)→2004W, m(1 ⁺ gen.4)→m(2 ⁺ gen.4) m(t ²)→2004W, m(t ²)→0.5(m(t ²))+m(t ²)) 2.01 TeV m(t ²)→2006W, m(t ²)→0.5(m(t ²))+m(t ²)) 1.37 TeV m(t ²)→2006W 2.0 TeV 2.15 TeV m(t ²)→2006W 2.15 TeV m(t ²)→2006W 2.15 TeV m(t ²)→2006W 2.15 TeV m(t ²)→2006W (t ²)→2006W (t ²)→2007W 2.15 TeV m(t ²)→2006W (t ²)→2017W 2.15 TeV m(t ²)→2016W (t ²)→2017W (t ²)→2016W (t ²)→2017W	171 (2.3232) 171 (3.330) 171 (2.6332) 161 (3.6731) 1766 (3.731) 1766 (3.731) 1766 (3.731) 1766 (3.731) 1766 (3.731) 1607 (3.697) 4TLAS-CONF-2017 (3.60) 1150 (2.015) 18
g med.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\tilde{b}\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{t}\tilde{\chi}_{1}^{0}$	0 0-1 <i>e</i> ,μ	3 b 3 b	Yes Yes	36.1 36.1		1.92 TeV m(ξ ⁰ ₁)<600 GeV 1.97 TeV m(ξ ⁰ ₁)<200 GeV	1711.01901 1711.01901
direct production	$ \begin{array}{l} \overline{b}_1 \overline{b}_1 \rightarrow b \overline{x}_1^0 \\ \overline{b}_1 \overline{b}_1 \rightarrow b \overline{x}_1^0 \\ \overline{b}_1 \overline{b}_1 \rightarrow b \overline{x}_1^0 \\ \overline{t}_1 \overline{t}_1, \overline{t}_1 \rightarrow \overline{t}_1 \\ \overline{t}_1 \overline{t}_1 \\ \overline{t}_1 \overline{t}_1, \overline{t}_1 \rightarrow \overline{t}_1 \\ \overline{t}_1 \overline{t}_1, \overline{t}_1 \rightarrow \overline{t}_1 \\ \overline{t}_1 \overline{t}_1 \overline{t}_1 \\ \overline{t}_1 \overline{t}_1 \overline{t}_1 \\ \overline{t}_1 \overline{t}_1 \overline{t}_1 \\ \overline{t}_1 \overline{t}_1 \\ \overline{t}_1 \overline{t}_1 \overline{t}_1 \\ \overline{t}_1 \overline{t}_1 \overline{t}_1 \overline{t}_1 \\ \overline{t}_1 \overline{t}_1 \overline{t}_1 \overline{t}_1 \\ \overline{t}_1 \overline{t}_1 \overline{t}_1 \\ $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 0.2 \ e, \mu \\ 0.2 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1-2 \ e, \mu \end{array}$	2 b 1 b 1-2 b 1-2 jets/1-2 mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 .7/13.3 0.3/36.1 36.1 20.3 36.1 36.1 36.1	950 GeV 275-700 GeV 275-700 GeV 90-198 GeV 90-198 GeV 90-430 GeV 150-600 GeV 230-790 GeV 320-880 GeV	m(k ²)-c420 GeV m(k ²)-c200 GeV, m(k ²)=m(k ²)+100 GeV m(k ²)-am(k ²), b=30 GeV m(k ²)-164 GeV m(k ²)-150 GeV m(k ²)-150 GeV m(k ²)-160 GeV m(k ²)-160 GeV	1708.09266 1706.03731 1208.2102, ATLAS-CONF-2016-077 1506.08616, 1709.04183, 1711.11520 1711.03301 1403.5222 1706.03986 1706.03986
direct	$ \begin{split} \hat{t}_{1,k} \hat{t}_{L,k}, \tilde{t} \rightarrow \mathcal{K}_{1}^{2} \\ \hat{x}_{1}^{*} \hat{x}_{1}^{*}, \tilde{x}_{1}^{*} \rightarrow \mathcal{K}(\mathcal{S}) \\ \hat{x}_{1}^{*} \hat{x}_{1}^{*}, \tilde{x}_{1}^{*} \rightarrow \mathcal{K}(\mathcal{S}) \\ \hat{x}_{1}^{*} \hat{x}_{1}^{*}, \tilde{x}_{1}^{*} \rightarrow \mathcal{K}(\mathcal{S}) \\ \hat{x}_{1}^{*} \hat{x}_{2}^{*} \rightarrow W_{1}^{*} \mathcal{K}_{1}^{2} \\ \hat{x}_{1}^{*} \hat{x}_{2}^{*} \rightarrow W_{1}^{*} \mathcal{K}_{1}^{2} \\ \hat{x}_{1}^{*} \hat{x}_{2}^{*} \rightarrow W_{1}^{*} \hat{x}_{1}^{*} \\ \hat{x}_{1}^{*} \hat{x}_{2}^{*} \rightarrow W_{1}^{*} \hat{x}_{1}^{*} \\ \hat{x}_{1}^{*} \hat{x}_{2}^{*} \rightarrow W_{1}^{*} \hat{x}_{1}^{*} \\ \hat{x}_{2}^{*} \hat{x}_{2}^{*} \hat{x}_{2}^{*} \hat{x}_{2}^{*} \rightarrow \hat{x}_{1}^{*} \\ \hat{x}_{1}^{*} \hat{x}_{2}^{*} \hat{x}_{2}^{*} \hat{x}_{2}^{*} \hat{x}_{2}^{*} \hat{x}_{2}^{*} \rightarrow \hat{x}_{1}^{*} \\ \hat{x}_{1}^{*} \hat{x}_{2}^{*} \hat{x}_{2}^{*} \hat{x}_{2}^{*} \hat{x}_{2}^{*} \hat{x}_{2}^{*} \rightarrow \hat{x}_{1}^{*} \\ \hat{x}_{1}^{*} \hat{x}_{2}^{*} \hat{x}_{2$	$2 e, \mu$ $2 e, \mu$ 2τ $3 e, \mu$ $2 \cdot 3 e, \mu$ e, μ, γ $4 e, \mu$ $\gamma \tilde{G} 1 e, \mu + \gamma$ $\gamma \tilde{G} 2 \gamma$	0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3 36.1	90-500 GeV 750 GeV 760 GeV 1.13 TeV 580 GeV 270 GeV 635 GeV 115-370 GeV 1.06 TeV	m(47)=0 m(47)=0, m(47, 5y=0.5(m(47))+m(47)) m(47)=0, m(47, 5y=0.5(m(47))+m(47)) m(47)=m(45), m(47)=0, m(47), m(47)) m(47)=m(47), m(47)=0, decoupled m(47)=m(47), m(47)=0, decoupled m(47)=m(47), m(47)=0, m(47)=0, decoupled m(47)=m(47), m(47)=0, m(47)=0, decoupled m(47)=m(47), m(47)=0, decoupled m(47)=m(47)=m(47), m(47)=0, decoupled m(47)=m(47)=m(47), m(47)=0, decoupled m(47)=m(47)=m(47), m(47)=0, decoupled m(47)=m(47)=m(47)=m(47), m(47)=0, decoupled m(47)=m(47)=m(47)=m(47)=m(47)=0, decoupled m(47)=m(47)	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1708.07875 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5088 1567.05493 ATLAS-CONF-2017-080
particles	$ \begin{array}{l} Direct \ \hat{x}_1^1 \hat{x}_1^- \operatorname{prod.}, \log_1 lived \ \hat{x}_1^+ \\ Direct \ \hat{x}_1^1 \hat{x}_1^- \operatorname{prod.}, \log_1 lived \ \hat{x}_1^+ \\ Stable, \ stoped \ \mathbb{R} + hadron \\ Stable, \ stoped \ \mathbb{R} + hadron \\ Metistable \ \mathbb{R} + hadron, \ \mathbb{R} - q \varphi_1^0 \\ Metistable \ \mathbb{R} + hadron, \ \mathbb{R} - q \varphi_1^0 \\ GMSB, \ \hat{x}_1^0 \to \varphi, \ hadron, \ hadron \\ GMSB, \ \hat{x}_1^0 \to \varphi, \ hadron, \ hadron \\ Stable, \ stoped, \ hadron \\ Stable, \ stoped, \ hadron \\ Metistable \ \mathbb{R} + hadron, \ \mathbb{R} - q \varphi_1^0 \\ Metistable \ \mathbb{R} + hadron, \ \mathbb{R} - q \varphi_1^0 \\ GMSB, \ \hat{x}_1^0 \to \varphi, \ hadron, \ hadron, \ hadron \\ Stable, \ Stable, \ stoped, \ hadron \\ MSB, \ Stable, \ \mathsf$	Disapp. trk dE/dx trk 0 trk dE/dx trk displ. vtx 1-2 μ 2 γ displ. ee/eμ/μ	1 jet - 1-5 jets - - - - -	Yes Yes - Yes - Yes - Yes	36.1 18.4 27.9 3.2 3.2 32.8 19.1 20.3 20.3	480 GeV 495 GeV 850 GeV 1 537 GeV 440 GeV 1.0 TeV	m(친) 개(친) - 160 M8V, +(친) =-0.2 ns m(친) 개(친) - 160 M8V, +(친) =-0.2 ns m(친) 개(친) - 160 M8V, +(친) =-161 ms - 160 M2V, +(100 M2V, +(100 M2V)) 	1712.02118 1506.05532 1310.6564 1600.05129 1604.04520 1710.04901 1411.6795 1408.5542 1504.05162
AHH	$ \begin{array}{l} LFV pp {\rightarrow} \bar{v}_{\tau} + \mathcal{K}, \bar{v}_{\tau} {\rightarrow} equ(ert)_{AT} \\ Blinear RPV CMSSM \\ \mathcal{K}^{2}_{K}, \mathcal{K}^{2}_{K} \rightarrow equ^{2}_{K}, \mathcal{K}^{2}_{K} {\rightarrow} equ_{K}, \mathfrak{g}^{A}_{K} {\rightarrow} equ_{K} {\rightarrow} equ_{K}, \mathfrak{g}^{A}_{K} {\rightarrow} equ_{K} {\rightarrow} equ {\rightarrow} equ_{K} {\rightarrow} equ_{K} {$	$e\mu, e\tau, \mu\tau$ $2 e, \mu$ (SS) $4 e, \mu$ $3 e, \mu + \tau$ $0 4-1 e, \mu 8-1 e, \mu $		- Yes Yes ets - 4 b - 4 b - b -	3.2 20.3 13.3 20.3 36.1 36.1 36.1 36.7 36.7 36.1	1.450 GeV 1.14 TeV 100-470 GeV 480-\$10 GeV 0.4-1.45	1.9 TeV x' ₁₁ =0.11, x' ₁₂₁ :::::::0.07 TeV m(2)=m(2), x' ₁₂ >-1 mm m(2)=m(2), x' ₁₂₁ >-1 mm m(2)=0.2 mm(2), x' ₁₂₁ =0 1.875 TeV m(2)=0.2 mm(2), x' ₁₂₁ =0 1.875 TeV m(2)=0.2 mm(2), x' ₁₂₁ =0 1.85 TeV m(2)=1.2) 1.85 TeV BR(r_i-ter)_{r_i}>0 5 TeV BR(r_i-ter)_{r_i}>275.	1607.08079 1404.2500 ATLAS-CONF-2016.075 1405.5086 SUSY-2016-8-2 1704.08493 1704.08493 1710.07171 1710.05544
	Scalar charm & wy	0	20	Vac	20.3	510 GeV	m(20)-200 GeV	1501 01325

WHAT BRINGS US TO THE HIGGS FACTORIES

- In the European PP Strategy Update 2020, Higgs factories are the highest priority future initiatives [3] -
 - Several projects on the market (~ 10^6 Higgs bosons)
 - All electron-positron colliders
 - Initial state well-defined
 - High (TeV) center-of-mass energies LCs
 - Clean environment
 - \rightarrow High-precision measurements (dominated by statistical uncertainty)
 - Linear (ILC, CLIC) vs. circular (CEPC, FCCee)

But, other aspects are also important:

- Extensibility of the physics span flexibility to accommodate other options (pp, hh, ep, gamma gamma, plasma....)
 - Flexibility to accommodate changes in HL-LHC discovery)
- feasibility and cost

LINEAR COLLIDERS

- Comes as mature technological options developed for decade(s) 'ready to take'
- Staged, upgradable machines
 - Various Higgs production mechanisms accessible over the energy scale span
 - Less precise determination of an observable at high energy leads to the same precision on coupling as at low energy
- Beam polarization
 - Chiral nature of charge currents results in significant sensitivity of WW-fusion cross-section on polarization scheme ($\sim 2 \cdot \mathcal{L}$)
 - Provides new observables sensitive to New Physics
 - Helps characterization of newly discovered particles
- A few technical benefits
 - Triggerless
 - Power-pulsing

Model Independent Fit

3 .5 Luminosity, Energy and Polarisation

⊕ e⁺e⁻ 4 ab⁻¹ 500 GeV polarised

e⁻ 2 ab⁻¹ 250 GeV polarised

⊕ e⁺e⁻ 5 ab⁻¹ 250 GeV unpolarised

LCC Physics WG

 \times 1/2

ilr iit

- $\cdot e^+e^-$ centre-of-mass energy
 - first stage: 250 GeV
 - tunable
 - upgrades: 500 GeV, 1 TeV
 - further options: running at Z pole & WW threshold
- · luminosity at 250 GeV:
 - 1.35 x 10³⁴ /cm² /s
 - upgrade 2.7 x 10^{34} /cm² /s (cheap)
 - upgrade 5.4×10^{34} /cm² /s (expensive)
- beam polarisation
 - $P(e) \ge \pm 80\%$
 - P(e⁺) = ±30%, at 500 GeV upgradable to 60%
- total length (250 GeV): 20.5 km

Timeline:

- Around 2000's TESLA, NLC, JLC
- (2004) ILC based on `cold' TESLA technology
- (2013) Technical Design Report [6]
- (2020) International Development Team (IDT)
- (?) Preparatory lab in Japan
- (2035) First collisions [7]

- Largest ever accelerator prototype (operating now as E-XFEL)
- Full industrialization of RF cavity production

ILC comes with the collider program and rich auxiliary experiments

- At the LHC, experiments search for dark particles produced by pp collisions are placed in existing tunnels and caverns at CERN (FASER @ATLAS, MilliQan @CMS)

- Dark sector (ILC-BDX), fixed-target and beam dump experiments (ILCX)

Potential ILC site in Kitakami

SiD Detector

- 5 T field
- More compact
- All Si

Optimized for CM energies 90 GeV - 1 TeV Track momentum resolution: $\sigma_{1/p} < 5 \cdot 10^{-5} \; {
m GeV}^{-1}$ Si/gaseous tracking CMS/40 Particle flow calorimetry Impact parameter resolution: $\sigma_d < 5\mu m \oplus 10\mu m \frac{1 \text{ GeV}}{n \sin^{3/2} \Theta}$ CMS/4 Mature design and available technologies Jet energy resolution: $\sigma_E/E = 3 - 4\%$ (for highest jet energies) ATLAS/2 Hermecity: $\Theta_{min} = 5$ mrad ATLAS/3

ILD Detector

3.5 T field

The only LC to go above 1 TeV

- CLIC Test Facility, CTF₃, at CERN now the 'CERN Linear Electron Accelerator for Research' facility, CLEAR
- Normal conductive high-current drive beam
- 380 GeV and 1.5 TeV one drive-beam
- 3 TeV two drive-beam complexes
- 100 MV/m gradient in the main-beam cavities

I. Bozovic, Lomonosov 2021

CLIC det

- 4 T field
- Ultra low-mass VTX
- All Si tracking
- Particle flow calorimetry
- Time-stamped readout (10 ns) due to pronounced Beamstrahlung background at higher energies

Project

Implementation

Summary Report Physics Potential

Detector

Technologies

PHYSICS PROGRAMME AT A LC

Due to staged realization of LCs, these are ideal machines to explore large physics span, with indirect access to the ~ 100 TeV scale

I. Bozovic, Lomonosov 2021

HIGGS PRODUCTION MECHANISMS AT LC

- Higgsstrahlung (ZH) is a unique feature of particleantiparticle collisions (i.e. e+e- colliders)
- It facilitates g_{HZZ} measurement in a modelindependent way * (ZH cross-section)
- Higgs invisible width can be determined from the recoil mass
- Most of the Higgs couplings can be determined with a better precision than at HL-LHC only from ZH
- Linear colliders foreseen as staged machines benefit from additional statistics from WW-fusion (clear example is CLIC with ~ 3M Higgs bosons at all stages)
- Double Higgs production at higher energies enables self-coupling measurement

* Theory warning: level of accuracy <1% requires incorporation of loop-corrections \rightarrow loss of strict model-independence

High-energy benefits, polarization, combination access to rare Higgs

- Clear advantage from rising cross-section for WW-fusion with energy
- ttH production, suitable i.e. for CPV study in the Higgs sector
- Multiple-Higgs production \rightarrow self-coupling measurement
- Less precise determination of the observable at high energy leads to the same precision on coupling as at low energy

decays

Branching ratio

56.1%

23.1%

8.5%

6.2%

2.8%

Decay mode

 $H \rightarrow WW^*$

 $H \rightarrow \tau^+ \tau^-$

 $H \rightarrow b\bar{b}$

 $H \rightarrow gg$

 $H \rightarrow c\bar{c}$

HIGGS PHYSICS

Situation at LHC (HL-LHC, and pp in general)

e+e- colliders

- No absolute measurement of the production cross-section (like ZH at e+e- colliders)
- Higgs couplings come in combination: $\sigma(H) \times BR(H \to a + b) \sim \frac{\Gamma_{\text{prod}}\Gamma_{\text{decay}}}{\Gamma_{\text{tot}}}$
- Only ratio of couplings can be directly determined (i.e. $g_{H\tau\tau}^2/g_{HWW}^2$)

- Absolute measurement of the ZH cross-section
- Absolute measurement of the Higgs BRs
- Nearly model-independent determination of the Higgs total width and couplings
- High energy benefits of LCs: λ , CPV, BSM extensions of the Higgs sector

HIGGS COUPLINGS

Model independent approach*, precision better than 1% for most couplings

Similar at circular colliders...

in %	FCC-ee 240 GeV	+FCC-ee 365 GeV	+HL- LHC
δ g нzz	0.25	0.22	0.21
δ g нww	1.3	0.47	0.44
δдньь	1.4	0.68	0.58
δ g Hcc	1.8	1.23	1.20
$\delta \mathbf{g}_{Hgg}$	1.7	1.03	0.83
δ g _{Hττ}	1.4	0.8	0.71
δ g _{Hµµ}	9.6	8.6	3.4
δ g _{Ηγγ}	4.7	3.8	1.3
δ g нŧŧ			3.3
δΓΗ	2.8	1.56	1.3

Statistical uncertainties are shown for 5 ab⁻¹@240 GeV and 1.5 ab⁻¹@365 GeV (from FCC-ee CDR)

COMBINATION WITH HL-LHC

To what extent future e+e- experiments are synergistic with the HL- LHC?

Evident synergy

- An example: ILC250 with 250 fb⁻¹
- Already the single measurement of the HZ cross section at ILC 250 yields a very large improvement of the HL-LHC accuracies

[11]	_			_			
	Benchmark	HL-LHC	HL-LHC + CLIC		HL-LHC + FCC-ee		
			$380 (4 a b^{-1})$	$380(1ab^{-1})$	240	365	
				$+1500 (2.5 ab^{-1})$			
$g_{HZZ}^{\rm eff}$ [%]	SMEFT _{ND}	3.6	0.3	0.2	0.5	0.3	
$g_{HWW}^{\rm eff}$ [%]	SMEFT _{ND}	3.2	0.3	0.2	0.5	0.3	
$g_{H\gamma\gamma}^{\rm eff}$ [%]	SMEFT _{ND}	3.6	1.3	1.3	1.3	1.2	
$g_{HZ\gamma}^{\rm eff}$ [%]	SMEFT _{ND}	11.	9.3	4.6	9.8	9.3	
$g_{H_{RR}}^{\mathrm{eff}}[\%]$	SMEFT _{ND}	2.3	0.9	1.0	1.0	0.8	
geff gHtt [%]	SMEFT _{ND}	3.5	3.1	2.2	3.1	3.1	
$g_{Hcc}^{\rm eff}$ [%]	SMEFT _{ND}	-	2.1	1.8	1.4	1.2	
$g_{Hbb}^{\mathrm{eff}}[\%]$	SMEFT _{ND}	5.3	0.6	0.4	0.7	0.6	
$g_{H\tau\tau}^{\rm eff}$ [%]	SMEFT _{ND}	3.4	1.0	0.9	0.7	0.6	
$g_{H\mu\mu}^{\mathrm{eff}}[\%]$	SMEFT _{ND}	5.5	4.3	4.1	4.	3.8	
$\delta g_{1Z}[\times 10^2]$	SMEFT _{ND}	0.66	0.027	0.013	0.085	0.036	
$\delta \kappa_{\gamma}[\times 10^2]$	SMEFT _{ND}	3.2	0.032	0.044	0.086	0.049	
$\lambda_{Z}[\times 10^{2}]$	SMEFT _{ND}	3.2	0.022	0.005	0.1	0.051	

The same holds for CLIC (and FCCee, CEPC)

HIGGS SELF-COUPLING

- High energy (>1 TeV) e+e- collider is superior in determination of the Higgs self-coupling
- High energy (double) Higgs production is the most sensitive to deviations of the Higgs self-coupling
- λ is determined from the total rate of HH events (ILD) or template fit of $m_{\rm HH}$ and BDT output (CLICdp)
- Polarization (i.e. -80%) almost doubles the HHvv rate

Low energy e+e- colliders (single Higgs production)

in combination with HL-LHC:

ILC250 and FCCee365, ±35%

- Double-Higgs production:

- HL-LHC: ~ ±50%
 - ILC500 ~ ± 27%
- CLIC3000 ~ ± 9%
 - FCC-hh ~ ± 5%

LC BENEFITS: STAGING, COMBINATIONS...

Higgs self-coupling

- Intermediate energy (1.4(5) TeV) at CLIC provides complementarity to 3 TeV option with ZHH production
- Different behavior of ZHH and double-Higgs production in WW-fusion, for non-SM values of triple Higgs couplings resolves ambiguity from interference
- Statistical uncertainty reduction in combination
- Clear gain from high center-of-mass energy

[7]	$\Delta\lambda_{hhh}/\lambda_{hhh}$
4 ab ⁻¹ at ILC500	27%
+8 ab ⁻¹ at ILC1000	10%

. Bozovic, Lomonosov 2021

HIGGS AS A PROBE TO BSM

$$\mathcal{L}_{\text{pre-EWSB}} = \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i \quad \Longrightarrow \quad e^+ \underbrace{\gamma/Z}_{e^{-\gamma/Z}} \underbrace{\gamma/Z}_{h} \overset{Z}{}$$
[12] $\delta\sigma/\sigma = 0.5\%/0.1\%$

- BSM physics can manifest itself in the Higgs sector in several ways:
 - <u>Contribution from the higher order</u> <u>operators (EFT approach)</u>
 - Higgs compositeness
 - Extended Higgs sector
 - DM portal
 - CPV

High energy Higgs production is the most sensitive to contributions from the 6D operators in the EFT approach and thus can probe the highest New Physics scale Λ

HIGGS AS A PROBE TO BSM – EFT INTERPRETATIONS

	Model	$b\overline{b}$	$c\overline{c}$	gg	WW	au au	ZZ	$\gamma\gamma$	$\mu\mu$
1	MSSM [36]	+4.8	-0.8	- 0.8	-0.2	+0.4	-0.5	+0.1	+0.3
2	Type II 2HD [35]	+10.1	-0.2	-0.2	0.0	+9.8	0.0	+0.1	+9.8
3	Type X 2HD [35]	-0.2	-0.2	-0.2	0.0	+7.8	0.0	0.0	+7.8
4	Type Y 2HD [35]	+10.1	-0.2	-0.2	0.0	-0.2	0.0	0.1	-0.2
5	Composite Higgs [37]	-6.4	-6.4	-6.4	-2.1	-6.4	-2.1	-2.1	-6.4
6	Little Higgs w. T-parity [38]	0.0	0.0	-6.1	-2.5	0.0	-2.5	-1.5	0.0
7	Little Higgs w. T-parity [39]	-7.8	-4.6	-3.5	-1.5	-7.8	-1.5	-1.0	-7.8
8	Higgs-Radion [40]	-1.5	- 1.5	+10.	-1.5	-1.5	- <mark>1.5</mark>	-1.0	-1.5
9	Higgs Singlet [41]	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5

Above 5σ model discrimination already with 250 Gev ILC

Substantial improvement at higher energies (linear e+e- colliders):
 @ILC a factor 2 in Higgs couplings precision with 500 GeV polarized beams
 Complementarity with HL-LHC

. Bozovic, Lomonosov 2021

HIGGS AS A PROBE TO BSM

- BSM physics can manifest itself in the Higgs sector in several ways:
 - Contribution from the higher order operators (EFT approach)
 - <u>Higgs compositeness</u>
 - Extended Higgs sector
 - DM portal
 - CPV

The scale of compositeness can be probed significantly higher from the highenergy collider kinematic limit

HIGGS AS A PROBE TO BSM

- BSM physics can manifest itself in the Higgs sector in several ways:
 - Contribution from the higher order operators (EFT approach)
 - Higgs compositeness
 - Extended Higgs sector
 - DM portal
 - CPV

- In majority of BSM models, SM Higgs comes with additional Higgses (2HDM, SUSY in general, compositeness,..etc.)
- Can be a lighter scalar than SM Higgs it is important to be capable of probing such states at future colliders
 - If SM Higgs is the lightest, other states are nearly mass-

degenerated

l. Bozovic, Lomonosov 2021

HIGGS TO INVISIBLE

- BSM physics can manifest itself in the Higgs sector in several ways:
 - Contribution from the higher order operators (EFT approach)
 - Higgs compositeness
 - Extended Higgs sector
 - <u>DM portal</u>

CPV

- Looking at the recoil mass under the condition that nothing observable is recoiling against the Z boson (only one Z per event)
- Access to DM connected to SM particles through a specific set of operators (portals)

 $\epsilon_H |H|^2 |\Phi|^2$

 $\frac{1}{2}\epsilon_Y F^Y_{\mu\nu}F'^{\mu\nu}$

 $\epsilon_a \frac{a}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu}$

CPV IN THE HIGGS SECTOR

- More difficult than just a spin/parity determination: Higgs can be a mixture of different CP eigenstates $h = H \cdot \cos \psi + A \cdot \sin \psi$
- Can be measured in Hff and HVV vertices, both in Higgs production and decays
- Hff (HVV) sensitive to CPV contributions at the tree (loop) level
- Only lose bounds (at present) on a quantum superposition od different CP states, while experimentally disfavored hypothesis on purely CP odd state

Collider

HL-LHC

HE-LHC

CEPC

FCC-ee₂₄₀

ILC₂₅₀

Reconstructed Φ 1 ab⁻¹@1 TeV ILC

I. Bozovic, Lomonosov 2021

 ψ_{CP}

8°

10°

4°

SUMMARY

- All future e+e- projects bring significant added value to the projected HL-LHC sensitivities in the Higgs sector...
- ... enabling discrimination of BSM models inaccessible at HL-LHC
- Already lowest energy phases brings sensitivity far beyond the projected HL-LHC precision
- Higher center of mass energies significantly extends physics span of a LC (Higgs self-coupling, BSM scenarios)
 upgrade is important – genuine advantage of a LC
- Additional enhancement from polarization (precision, model discrimination)

READY-TO-WEAR PROJECTS

20th Lomonosov Conference 19.08.-15.08. 2021

THANK YOU

20th Lomonosov Conference 19.08.-15.08. 2021

References:

- 1. N. Arkani Hamed, CEPCWS, Beijing, 2019, https://indico.ihep.ac.cn/event/7389/session/o/contribution/18/material/slides/o.pdf
- 2. Higgs@FCWG
- 3. European Strategy Briefing Book and arXiv:2001.05278
- 4. A. Robson, CEPCWS EU edition, Oxford, 2019
- 5. P. Bambade et al., ILC A Global Project, arXiv:1903.01629v3
- 6. ILC TDR, arXiv:1306.6328
- 7. S. Kawada, ILC Physics potential, EPS-HEP2021
- 8. A. Robson et al., The Compact Linear e+e- Collider (CLIC): Accelerator and Detector, arXiv:1812.07987
- 9. S. Kawada, Prospects of measuring Higgs boson decays into muon pairs at the ILC, arXiv:1902.05021
- 10. J. List, , ECFA HIggs@FutureColliders, 2019 and arXiv:1710.07621
- 11. The CLIC Potential for New Physics, arXiv:1812.02093
- 12. M. Perelstein, PHENO-16, Pittsburgh, May 11 2016
- 13. Yu Kato @ EPS-HEP 2019
- 14. D. Jeans et al., Measuring the CP state of tau lepton pairs from Higgs decay at the ILC, arXiv:1804.01241
- B1. D. Arominski, A detector for CLIC: main parameters and performance, arXiv:1812.07337
- B2. G. Weiglein, Higgs requirements from theory, DESY, Hamburg, May 2019

20th Lomonosov Conference 19.08.-15.08. 2021

BACK UP

SIMILAR PERFORMANCE OF LC DETECTORS

Particle Flow is the 'key word'. Only neutral particles ID (γ , neutral hadrons) are left to calorimeters.

THEORY EXPECTATIONS

How well do we need to know Higgs couplings?

- In many BSM models one expects only % level deviations from the SM couplings for BSM particles in the TeV range
- Higgs to EW bosons couplings are particularly sensitive to BSM; λ even more
- Example, 2HDM-type model in decoupling limit [B2]

Percent order accuracy on Higgs couplings offers access to various BSM scenarios

LINEAR VS. CIRCULAR

- Precision vise, linear and circular colliders' precision is comparable when it comes to the Higgs couplings
- Due to high-energy access of high crosssection Higgs production mechanisms, LCs are superior in probing of the Higgs selfcoupling
- Also, beam polarization brings added value
- Extensibility of the physics span (pp collisions, 100 TeV center-of mass energy) is a great advantage of circular colliders
- But, + a 100 TeV hadron-collider, comes at the moment with quite a few open issues: - Accelerator & detector technologies - Huge pile-up

- Systematics control and theoretical uncertainties

Theoretical Uncertainties: production

Production at hadron colliders

- For HL-LHC uncertainties expected to be improved by factor 2 w.r.t. current
- HE-LHC: another factor of 2
- FCC-hh: well below 1%

Requires e.g.

- \circ Improved PDFs
- Higher precision calculations
- $^{\circ}\,$ Improved non-perturbative aspects

[B. Heinemann '19]

Note: this is related to the fact that FCC-hh is assumed to be realised only far in the future!

•

A word from theory

- Precision measurement of couplings at hadron colliders are limited by the systematic (theoretical) uncertainties
- This is also a reason for the fact that the Higgs coupling projections for HE-LHC show only relatively small improvements over HL-LHC
- FCC-hh projections, in particular when taken separately, depend on a drastic reduction of theory uncertainties [B2].