Latest Results from MicroBooNE: Search for the Low Energy Excess

Jay Hyun Jo on behalf of the MicroBooNE Collaboration Wright Laboratory, Yale University

20th Lomonosov Conference August 19, 2021

MiniBooNE low energy excess

- MiniBooNE observed the 4.8 σ excess in lowenergy region in v_e CCQE-like events
- nature of the excess could be "electron-like" (eLEE) or "photon-like" (γLEE)
 - at low energy, largest background in -MiniBooNE is misidentified NC π^0 events
 - MiniBooNE cannot distinguish between electrons and photons, also without hadron information
- can we separate electrons and photons? can we understand the excess with enough event topology information such as hadronic activities?

Events/Me

testing eLEE vs. γ LEE hypotheses with MicroBooNE

MicroBooNE uses the excellent properties and resolution of its LArTPC to select both eLEE and γ LEE signals with high purity

testing eLEE vs. γ LEE hypotheses with MicroBooNE

...also to identify hadronic final states to provide more information of different interactions

γLEE search

- targets 1γ 0p and 1γ 1p topologies consistent with NC $\Delta \rightarrow N\gamma$
 - applying a ~3x flat scaling to NC $\Delta \rightarrow N\gamma$ can explain the observed MiniBooNE excess
- using "Pandora" reconstruction [EPJC 78 (2018) 82], with BDT-based selection
- uses NC π^0 events as sideband, correction to the GENIE-predicted NC π^0 production rate normalizations

MICROBOONE-NOTE-1087-PUB

 $1\gamma 1p$

γLEE search

- targets 1γ 0p and 1γ 1p topologies consistent with NC $\Delta \rightarrow N\gamma$
 - applying a ~3x flat scaling to NC $\Delta \rightarrow N\gamma$ can explain the observed MiniBooNE excess
- using "Pandora" reconstruction [EPJC 78 (2018) 82], with BDT-based selection
- uses NC π^0 events as sideband, correction to the GENIE-predicted NC π^0 production rate normalizations

γLEE search

- targets 1γ 0p and 1γ 1p topologies consistent with NC $\Delta \rightarrow N\gamma$
 - applying a ~3x flat scaling to NC $\Delta \rightarrow N\gamma$ can explain the observed MiniBooNE excess
- using "Pandora" reconstruction [EPJC 78 (2018) 82], with BDT-based selection
- uses NC π^0 events as sideband, correction to the GENIE-predicted NC π^0 production rate normalizations

eLEE search: three complementary searches

- three independent, complementary analyses
- targeting different topologies and using different reconstruction, particle identification, and selection methods
 - "Pandora" based: targeting $1e0p0\pi$ and $1eNp0\pi$ (N>0)
 - "Deep Learning" based: targeting $1e1p0\pi$
 - "Wire-Cell" based: targeting $1eXpX\pi$ (X>=0)
- different final state topologies with various hadronic activities can probe many theoretical models to explain MiniBooNE anomaly

	1e0p	
sterile v		
Higgs physics		
dark v	/	
Z' boson	/	
axion-like particles	~	

- Pandora based eLEE search
 - with topology- and calorimetry-based PID tools [EPJC 78 (2018) 82]
 - 1e0p0 π and 1eNp0 π selection
 - pure v_e CC 1eNp selection achieved, down to low energy
 - high-energy v_eCC events show reasonable data-MC agreement

- Pandora based eLEE search
 - with topology- and calorimetry-based PID tools [EPJC 78 (2018) 82]
 - 1e0p0 π and 1eNp0 π selection
 - pure v_e CC 1eNp selection achieved, down to low energy
 - high-energy v_eCC events show reasonable data-MC agreement

- Pandora based eLEE search
 - v_{μ} CC inclusive sideband for validating flux and cross-section modeling, and constraining v_eCC backgrounds
 - shower reconstruction and calorimetry validation with dedicated π^0 selection

Jay Hyun Jo

11

- Pandora based eLEE search
 - a side-by-side fit to 1eNp, 1e0p and v_{μ} CC selections constrains 1eNp and 1e0p background predictions
 - systematic uncertainty reduces significantly after such constraints

Full Systematics Fractional Covariance Matrix MicroBooNE Simulation, Preliminary

eLEE search: Deep Learning

- Deep Learning based eLEE search
 - track/shower separation with semantic segmentation [PRD 103 (2021) 052012]
 - PID with convolutional neural network [PRD 103 (2021) 092003]
 - 1e1p0 π selection (CCQE-dominated) & 1μ 1p selection (sideband)
 - high purity samples are selected

HIP

pixel-level identification, using semantic segmentation

multi-particle identification using convolutional neural network

MIP Shower MicorBooNE Simulation eliminarv

eLEE search: Deep Learning

- Deep Learning based eLEE search
 - track/shower separation with semantic segmentation [PRD 103 (2021) 052012]
 - PID with convolutional neural network [PRD 103 (2021) 092003]
 - 1e1p0 π selection (CCQE-dominated) & 1μ 1p selection (sideband)
 - high purity samples are selected

eLEE search: Wire-Cell

- Wire-Cell based eLEE search
 - based on 3D images _
 - topology-agnostic event reconstruction [JINST 16 (2021) P06043]
 - excellent cosmic rejection power [PRApplied 15 (2021) 064071]
 - fully inclusive $1eXpX\pi$ selection: least model dependent

- very pure & high stat v_e and v_μ selection achieved
- using 6 different sideband samples to constrain signal channel

eLEE search: Wire-Cell

- Wire-Cell based eLEE search
 - based on 3D images -
 - topology-agnostic event reconstruction [JINST 16 (2021) P06043]
 - excellent cosmic rejection power [PRApplied 15 (2021) 064071]
 - fully inclusive $1eXpX\pi$ selection: least model dependent
 - very pure & high stat v_e and v_μ selection achieved
 - using 6 different sideband samples to constrain signal channel

eLEE search: Wire-Cell

- Wire-Cell based eLEE search
 - cross-section (GENIE) and flux uncertainty estimation with event-reweighting
 - Bayesian statistical uncertainty estimation
 - the most dominant systematics in v_e channel is cross-section uncertainty

YLEE & eLEE search: conditional constraints & sensitivity projection µBooNP

- conditional constraint method shared among all LEE searches
 - constrain signal channel by utilizing sideband samples
 - γ LEE: 1 γ signal constrained with 2 γ sideband
 - eLEE: v_e signal constrained with v_{μ}/π^0 sidebands

projected sensitivities

- tested against LEE model, unfolded from MiniBooNE, scaling NC Δ /intrinsic v_e event rates
- γ LEE: 2.1 σ sensitivity to reject LEE hypothesis
- eLEE (Wire-Cell case): 3.3σ sensitivity to reject LEE hypothesis

Wire-Cell eLEE Run 1-3

MicroBooNE Preliminary

Data POT	Null hypotesis: SM	Null hypothesis: eLEE (x=1)
6.37E+20	4.7σ	3.3σ

MICROBOONE-NOTE-1100-PUB

MicroBooNE in the works!

2018 2019 2021 2017 2020

strong track record of papers since 2017: 33 publication to date - ~1/2 in JINST - ~1/2 in Phys. Rev/EPJC

Yale

Calibration of the Charge and Energy Response of the MicroBooNE Liquid Argon Time Projection Chamber Using Muons and Protons Design and Construction of the MicroBooNE Cosmic Ray Tagger System Rejecting Cosmic Background for Exclusive Neutrino Interaction Studies with Liquid Argon TPCs: A Case Study with the MicroBooNE Detector First Measurement of Muon Neutrino Charged Current Neutral Pion Production on Argon with the MicroBooNE detector A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber Comparison of Muon-Neutrino-Argon Multiplicity Distributions Observed by MicroBooNE to GENIE Model Predictions Ionization Electron Signal Processing in Single Phase LArTPCs II: Data/Simulation Comparison and Performance in MicroBooNE Ionization Electron Signal Processing in Single Phase LArTPCs I: Algorithm Description and Quantitative Evaluation with MicroBooNE Simulation The Pandora Multi-Algorithm Approach to Automated Pattern Recognition of Cosmic Ray Muon and Neutrino Events in the MicroBooNE Detector Measurement of Cosmic Ray Reconstruction Efficiencies in the MicroBooNE LAr TPC Using a Small External Cosmic Ray Counter Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC Michel Electron Reconstruction Using Cosmic Ray Data from the MicroBooNE LAr TPC Determination of Muon Momentum in the MicroBooNE LAr TPC Using an Improved Model of Multiple Coulomb Scattering

Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber Design and Construction of the MicroBooNE Detector

- Search for a Higgs Portal Scalar Decaying to Electron-Positron Pairs in the MicroBooNE Detector
- Measurement of the Longitudinal Diffusion of Ionization Electrons in the Detector
- Cosmic Ray Background Rejection with Wire-Cell LAr TPC Event Reconstruction in the MicroBooNE Detector
- Measurement of the Flux-Averaged Inclusive Charged Current Electron Neutrino and Antineutrino Cross Section on Argon using the NuMI Beam in MicroBooNE Measurement of the Atmospheric Muon Rate with the MicroBooNE Liquid Argon TPC
- Semantic Segmentation with a Sparse Convolutional Neural Network for Event Reconstruction in MicroBooNE
- High-performance Generic Neutrino Detection in a LAr TPC near the Earth's Surface with the MicroBooNE Detector
- Neutrino Event Selection in the MicroBooNE LAr TPC using Wire-Cell 3D Imaging, Clustering, and Charge-Light Matching
- A Convolutional Neural Network for Multiple Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber
- The Continuous Readout Stream of the MicroBooNE Liquid Argon Time Projection Chamber for Detection of Supernova Burst Neutrinos
- Vertex-Finding and Reconstruction of Contained Two-track Neutrino Events in the MicroBooNE Detector
- Measurement of Differential Cross Sections for Muon Neutrino CC Interactions on Argon with Protons and No Pions in the Final State Measurement of Space Charge Effects in the MicroBooNE LAr TPC Using Cosmic Muons
- First Measurement of Differential Charged Current Quasi-Elastic-Like Muon Neutrino Argon Scattering Cross Sections with the MicroBooNE Detector Search for heavy neutral leptons decaying into muon-pion pairs in the MicroBooNE detector
- Reconstruction and Measurement of O(100) MeV Electromagnetic Activity from Neutral Pion to Gamma Gamma Decays in the MicroBooNE LArTPC
- A Method to Determine the Electric Field of Liquid Argon Time Projection Chambers Using a UV Laser System and its Application in MicroBooNE
- First Measurement of Inclusive Muon Neutrino Charged Current Differential Cross Sections on Argon at Enu ~0.8 GeV with the MicroBooNE Detector

significantly improving signal processing, calibrations, event reconstruction, systematics, and neutrino interaction modeling

MicroBooNE in the works!

18				
15	2020	2019	2018	2017
Search for a H 👔 🛓 12	•			201/
Measurement e				
$\frac{COSITIC Ray back}{Measurement of th} = 9$				
Measurement of the				
Semantic Segmentar				
High-performance Gen				
Neutrino Event Selection				
Convolutional Neural Net				
e Continuous Readout Stre				
urement of Differential Cro				
ment of Space Charge Effects				
ement of Differential Charged Curre	Firs			
y neutral leptons decaying into muc	Search			
nine the Electric Field of Liquid Argo	A Method			
arge and Energy Response of the Mi	Calibration			
clusive Muon Neutrino Charged Curr	First Measurem			
the MicroBooNE Cosmic Ray Tagger	Design and Const			
or Exclusive Neutrin	ejecting Cosmic Bac	R		
	Neural Network for	A Deen		
ultiplicity Distributi	n of Muon-Neutrino	Comparisor		
e Phase LArTPCs II: [👷 🖌 0.3 🕂	ron Signal Processin	Ionization Elect		
ase LArTPCs I: Algo	Signal Processing ir	nization Electron	lor	
ed Pattern Recogni	gorithm Approach to	andora Multi-Alg	The Pa	
s in the MicroBooN	Kay Reconstruction E	nent of Cosmic R	Measuren	
e MicroBooNE LAr	Jsing Cosmic Ray Dat	econstruction U	Michel Electron R	
ing an Improved M	n the MicroBooNE L	on Momentum ir	rmination of Muc	Dete
rgon Time Projectio	Neutrino Events in a	orks Applied to	onal Neural Netw	Convolutio
	etector	MicroBooNE De	onstruction of the	Design and Co
0				

IicroBooNE Liquid Argon Time Projection Chamber Using Muons and Protons rrent Differential Cross Sections on Argon at Enu ~0.8 GeV with the MicroBooNE Detector

er System

- MiniBooNE's low energy excess search result with MicroBooNE is near •
 - with LArTPC technology in MicroBooNE, can probe many different particle content and kinematic properties of the excess events
 - novel reconstruction algorithms are developed for cosmic rejection & particle identification
 - on the cusp of the first LEE results with 6.95x10²⁰ POT (half of the full dataset) are imminent
- stay tuned for more results to come!

backup slides

Jay Hyun Jo

22

short-baseline anomalies

- and accelerator domains
- anomaly
- possible portal for new physics: the holy grail of the particle physics community —
- need to resolve the anomalies -> MicroBooNE & SBN program

Yale

$$(c_{ij} = \cos\theta_{ij}, s_{ij} = \sin\theta_{ij})$$

three flavor neutrino states is well established by neutrino oscillation physics in solar, atmospheric, reactor,

puzzling collection of short-baseline anomalies: reactor anomaly, gallium anomaly, LSND & MiniBooNE

- correctly estimating backgrounds/oscillation is important for the future neutrino program such as DUNE

Jay Hyun Jo

23

reactor anomaly and gallium anomaly

- measurements of \overline{v}_e disappearance from nuclear reactor
- ~6% discrepancy from the standard fit
- current running experiments to address this (e.g. PROSPECT, STEREO)
- is this indicative of sterile neutrinos?

Yale

gallium-based experiments (GALLEX, SAGE) measured a deficit of v_e in their calibration run

possible hint of v_e disappearance?

	CH00Z	_
	 -	_
	 -	
	 1	_
		_
		_
	 	_
_	-	_

LSND & MiniBooNE anomaly

 $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ excess over background suggests evidence for oscillation at $\Delta m^2 \sim 1 eV^2$

arxiv:2006.16883

- **MiniBooNE** (1998-2020)
- measured $v_{\mu} \rightarrow v_e$ and $\overline{v_{\mu}} \rightarrow \overline{v_e}$ appearance
- the excess of events corresponding to $200 < E_v < 475$ MeV

Jay Hyun Jo

1.4

Fermilab SBN program

Yale

- three LArTPC detectors, staged approach to address short baseline anomalies •
 - phase 1: MicroBooNE definitive test of the MiniBooNE low energy excess
 - phase 2: SBND+MicroBooNE+ICARUS v_e appearance and v_μ disappearance searches
- reduce statistical uncertainties with large mass far detector
- reduce systematic uncertainties with same LArTPC detector technology

MicroBooNE experiment

LArTPC Detector

- 85 tons of LAr active volume
- TPC: 8256 anode sense wires in 3 planes PMT: 32 8-inch PMTs
- fine-grained 3D tracking with local dE/dx information and fully active target medium: good electron-photon separation power

physics goal

- strong understanding of the detector and highly developed event reconstruction, paving the way to future LAr detectors (SBN & DUNE)
- neutrino interaction measurements
- towards low-energy excess: definitively address the MiniBooNE anomaly

v-Argon cross section measurements @ uBooNE

- cross section measurements of v-Ar interactions will allow us to develop models that describe v-Ar interaction data well
- MicroBooNE has collected the largest sample of v-Ar • interactions available to date and produced first set of cross section measurements with various final states
 - v_{μ} CC inclusive
 - v_{μ} CCQE-like
 - v_{μ} CC 0 π Np
 - v_e + anti- v_e CC inclusive
 - and many others to come!

Rich and Evolving Theory Landscape in part, this has been motivated by attempts to explain SBL anomalies; ex., v_e appearance but no v_μ disappearance

- dark tridents, dark scalars, dark neutrinos

- Bertuzzo, Jana, Machado, Zukanovich Funchal, PRL 121, 241801 (2018)
- Abdullahi, Hostert, Pascoli, arXiv:2007.11813
- Alvarez-Ruso, Saul-Sala, arXiv:1705.00353
- heavy sterile neutrinos, heavy neutral leptons
 - Ballett, Pascoli, Ross-Lonergan, PRD 99, 071701 (2019)
 - Gninenko, PRD 83, 093010 (2011)
- more complex Higgs physics
 - Dutta, Ghosh, Li, PRD 102, 055017 (2020)
 - Asaadi, Church, Guenette, Jones, Szelc, PRD 97, 075021 (2018) \bullet
 - Abdallah, Gandhi, Roy, arXiv:2010.06159
- mixed models of neutrino oscillations and decay
 - Vergani, Kamp, Diaz, Arguelles, Conrad, Shaevitz, Uchida, arXiv:2105.06470
 - Fischer, Hernandez-Cabezudo, Schwetz, PRD 101, 075045 (2020)
- axion-like particles

Yale

- Chang, Chen, Ho, Tseng, arXiv:2102.05012
- new particles produced in the beam
 - Brdar, Fischer, Smirnov, PRD 103, 075008 (2021) •

(caution: not an exhaustive list)

Bertuzzo *et al.*, PRL 121, 241801 (2018)

- many of these models predict more complex final states (e⁺e⁻) & differing levels of hadronic activity
- want a more agnostic approach than solely testing a sterile neutrino hypothesis (1e⁻ + X)
- we are fortunate that LAr TPCs are sensitive to these possibilities

µBooNP MicroBooNE's Exploration of the MiniBooNE Excess

first series of results (1/2 the MicroBooNE data set)	1e0p	1e1p	1eNp	1eX	e ⁺ e ⁻ + nothing	e⁺e⁻ + X	1γ0p	1 γp	1γΧ
sterile v	/	/	/	/					
Higgs physics		/	/	/		/			
dark v	/				/				
Z' boson	/				/				
axion-like particles	/				/				
sterile v + decay							/		
heavy sterile v							/		
SM γ production							/		/
???		/		/	/	/		/	/

Jay Hyun Jo

30

hadronic energy reconstruction validation

Constraint: conditional mean and conditional covariance

X,constrained	=	$\mu^X + \Sigma^{XY} \cdot \left(\Sigma^{YY}\right)^{-1} \cdot \left(n^Y - \mu^Y\right),$
X,constrained	=	$\Sigma^{XX} - \Sigma^{XY} \cdot \left(\Sigma^{YY}\right)^{-1} \cdot \Sigma^{YX}.$

 Monte-Carlo prediction is corrected based on the data/MC discrepancy in the constraint channel.

Systematic uncertainty is reduced

 Constraint respects the allowed error ranges in the cross section, flux, and detector systematics

