Measurements of multi-boson productions including vector-boson fusion and vector-boson scattering at ATLAS

Rongkun Wang¹ on behalf of the ATLAS collaboration

Aug 19 2021 @ 20th Lomonosov

1. Harvard University

Multi-boson Physics

- Electroweak production, powerful tool to probe the Standard Model
- Vector boson scattering(VBS) directly probes gauge boson selfinteractions, non-Abelian structure of the EW interactions
- Rare processes provides discovery opportunities

<u>ATL-PHYS-PUB-2021-032</u>

Rongkun Wang

Outline

- VBS processes
 - Observation of EW ZZjj
 - Fiducial cross-section measurements of $\sqrt{2}$ $Z(-->II)\gamma jj$
 - Search for $Z(->vv)\gamma jj$
- Observation of WWW tri-boson process

Rongkun Wang

Observation of EW ZZjj

- Very rare process with a fiducial cross section of ~1fb
 - Prevent unitarity violation at TeV scale
- Decay channel ZZ—> 4I, ZZ—>IIvv

Data

ATLAS

• $|\Delta Y_{jj}| > 2$, $m_{jj} > 300$ for 4I (400 for IIvv)

ZZ(EW)

ZZ(QCD) ggŻZ Others /// Uncertainty

0.2 0.4 0.6

0.8

MD

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

ttttjj QCD Control Region

- BDT is trained to distinguish between EWK and QCD ZZjj, largely using jet-related variables, m_{jj} , $|\Delta Y_{jj}|$, p_T^{jets} ...
- Fitting on the BDT score, gives $\mu_{EW}=1.35\pm0.34$, with significance of 5.5(4.3) σ. μ_{QCD}=0.96±0.22

Events / 0.125

18

16

14

12

10

Submitted to Nature Physics arXiv:2004.10612

Rongkun Wang

-0.8 -0.6 -0.4 -0.2 0

Events / Bin

60

50

40

30

20

10

1.5 22.1 Pata / Led. 100.25 100.25 100.25

20th Lomonosov

0

0.2

0.4

0.6

0.8

MD

-0.8 - 0.6 - 0.4 - 0.2

Data

ATLAS

*llll*jj

Others

Signal Region

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

MD

Measurement of Z(—>II)γjj

- Probes the non-SM neutral quartic gauge couplings.
- VBF topology: large rapidity gap between the jets $|\Delta Y_{jj}| > 1$
- Centrality of Ilγ relative to the tagging jets

$$\zeta(\ell\ell\gamma) = \left|\frac{y_{\ell\ell\gamma} - (y_{j_1} + y_{j_2})/2}{y_{j_1} - y_{j_2}}\right|,\,$$

• $\zeta < 0.4$ as signal region, $\zeta > 0.4$ as control region

ATLAS-CONF-2021-038

Rongkun Wang

Measurement of Z(—>II)γjj

- Simultaneous fit in SR and CR on m_{jj} distribution
 - µew, µqcd-sr, µqcd-sr
- EWK fiducial XS:
 - Measured: $4.49 \pm 0.4(stat.) \pm 0.42(syst.)fb$
 - Pred: $4.73 \pm 0.01(stat.) \pm 0.15(PDF)^{+0.23}_{-0.22}(scale)fb$
 - Observation of well over 10 σ
- QCD process included:
 - Measured:

$$\sigma_{EW+QCD} = 20.6 \pm 0.6 \text{ (stat.)}^{+1.2}_{-1.0} \text{ (syst.) fb},$$

Predicted(MG5):

Rongkun Wang

Observation of Z(—>vv)γjj

- First observation of Z(vv)γjj with 5.2(5.1) σ significance
 - $|\Delta \eta_{jj}| > 3$, $m_{jj} > 250 \text{ GeV}$
 - $\Delta \phi_{jj} < 2.5$ to suppress multijet
- Using multiple control region to constrain background during the fit
- Measured signal strength $\mu_{EW} = 1.03 \pm 0.25$
- Also sets limits on invisible Higgs decay

EXOT-2021-17

Rongkun Wang

Triboson - WWW

- One of the rarest SM processes, sensitive to aTGC/ aQGC
 - Off-shell WH—>WW* is also included as signal
- Two channels:
 - WWW—>I±vI±vjj, same-sign di-leptons plus 2 jets
 - More channels based on lepton flavor: ee, eμ, μμ
 - WWW—>I±vI∓vI±v, no same-flavor opposite-sign lepton pairs

ATLAS-CONF-2021-039

Rongkun Wang

Triboson - WWW

- Signal region:
 - m_{II}, E_T^{miss} to suppress Z+jets
- Train separate BDT in 2I and 3I channels
 - Variables include m_{jj}, p_T^(jet), jet multiplicity, m_{II}, p_T^(lep), E_T^{miss}...
- Main background: WZ, constrained by SFOS control region during simultaneous fit with signal
- Other data-driven background: non-prompt, γ conversion(Vγ), charge-flip
- Other SM background estimated by MC

Rongkun Wang

WWW 21 channel

Post-fit data/MC comparison

Rongkun Wang

WWW 3I channel

Post-fit data/MC comparison

Triboson - WWW

• Signal strength

$$prediction = \mu \cdot s + b$$

Signal Strength	Normalization Factors		
$\mu(WWW)$	WZ + 0 jets	WZ + 1 jet	$WZ + \geq 2$ jets
1.66 ± 0.28	1.12 ± 0.11	0.98 ± 0.04	0.88 ± 0.18

- Total observed(expected) significance of 8.2(5.4) σ
- Also measured production cross section
 - 850 ± 100 (stat.) ± 80 (syst.) fb

Fit	Observed (expected) significances $[\sigma]$	$\mu(WWW)$
$e^{\pm}e^{\pm}$	2.3(1.4)	1.69 ± 0.79
$e^{\pm}\mu^{\pm}$	4.6(3.1)	1.57 ± 0.40
$\mu^{\pm}\mu^{\pm}$	5.6~(2.8)	2.13 ± 0.47
2ℓ	6.9(4.1)	1.80 ± 0.33
3ℓ	4.8(3.7)	1.33 ± 0.39
Combined	8.2(5.4)	1.66 ± 0.28

Rongkun Wang

Summary

- VBS EWK ZZjj processes observed with 5.5σ (4.3σ expected)
- Fiducial cross section of Z(—>II)γjj processes measured to be 4.49±0.58 fb
- $Z(->vv)\gamma j j$ is observed for the first time 5.2 σ (5.1 σ expected)
- WWW processed is observed for the first time 8.2σ (5.4σ expected)

backup

Z(—>II)γjj phase space

Lepton	p_{T}^{ℓ} > 20, 30(leading) GeV, $ \eta_{\ell} < 2.47$ $N_{\ell} \ge 2$
Photon	$E_{\rm T}^{\gamma} > 25 \text{ GeV}, \ \eta_{\gamma} < 2.37$
	$E_{\rm T}^{cone20} < 0.07 E_{\rm T}^{\gamma}$
	$\Delta R(\ell,\gamma) > 0.4$
Jet	$p_{\rm T}^{jet} > 50 \text{ GeV}, y_{jet} < 4.4$
	$ \Delta y > 1.0$
	$m_{jj} > 150 \text{ GeV}$
	remove jets if $\Delta R(\gamma, j) < 0.4$ or if $\Delta R(\ell, j) < 0.3$
Event	$m_{\ell\ell} > 40 \text{ GeV}$
	$m_{\ell\ell} + m_{\ell\ell\gamma} > 182 \text{ GeV}$
	$\zeta(\ell\ell\gamma) < 0.4$
	$N_{jets}^{gap} = 0$

Table 1: Summary of selection criteria applied at particle level.

Rongkun Wang

WWW BDT variables

2ℓ	3ℓ
$ m_{jj} - m_W $	$E_{\rm T}^{\rm miss}$ significance $\times 10/E_{\rm T}^{\rm miss}$
$p_{\rm T}$ (forward jet)	$p_T(\ell_2)$
$E_{\rm T}^{\rm miss}$ significance	N(jets)
$p_T(j_2)$	same flavor $m_{\ell\ell}$
minimum $m(\ell, j)$	$m_T(\ell\ell\ell, E_{\rm T}^{\rm miss})$
$m(\ell_2, j_1)$	$m(\ell_2,\ell_3)$
N(jets)	$\Delta \phi(\ell \ell \ell, E_{\rm T}^{\rm miss})$
$p_{\mathrm{T}}(\ell_2)$	minimum $\Delta R(\ell, \ell)$
$m_{\ell\ell}$	$p_{\rm T} (\ell_3)$
$ \eta(\ell_1) $	$m_T(\ell_2, E_T^{\text{miss}})$
N(leptons in jets $)$	$E_{\rm T}^{\rm miss}$ significance
$m(\ell_1, j_1)$	

Rongkun Wang

WWW yield

	$e^{\pm} e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	3ℓ
WWW	29.3 ± 4.4	128 ± 19	84 ± 12	35.8 ± 5.2
WZ	80.6 ± 5.7	344 ± 22	171 ± 10	16.4 ± 1.4
Charge-flip	30.3 ± 7.2	18.8 ± 4.5	_	1.7 ± 0.4
γ conversions	62.1 ± 8.7	142 ± 15	_	1.5 ± 0.1
Non-prompt	16.6 ± 4.1	138 ± 24	98 ± 21	26.3 ± 2.9
Other	22.8 ± 3.7	102 ± 15	59.7 ± 9.0	8.0 ± 0.9
Total predicted	242 ± 11	872 ± 22	414 ± 17	89.7 ± 5.4
Data	242	885	418	79

WWW data/mc plots

Rongkun Wang

WWW uncertainty

Uncertainty source	$\Delta\sigma/\sigma$ [%]
Data-driven background	5.3
Prompt-lepton-background modeling	3.3
Jets and $E_{\rm T}^{\rm miss}$	2.8
MC statistics	2.8
Lepton	2.1
Luminosity	1.9
Signal modeling	1.5
Pile-up modeling	0.9
Total systematic uncertainty	9.5
Data statistics	11.2
WZ normalizations	3.3
Total statistical uncertainty	11.6