Lomonosov (Moscow State) University

19-25 August 2021

Moscow Russia

CPV in e⁺e⁻H at 1 TeV ILC

NATAŠA VUKAŠINOVIĆ, T. AGATONVIĆ-JOVIN ET AL. VINCA INSTITUTE OF NUCLEAR SCIENCES, UNIVERSITY OF BELGRADE, FACULTY OF SCIENCE, UNIVERSITY OF KRAGUJEVAC

УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ

20th Lomonosov conference on Elementary Particle Physics

Outline

- Introduction
- SM-like Higgs boson as a CPV mixture of CP even and odd states
- Ways to probe HVV vertices (V = Z, W) in Higgs production and decays
- Higgs production in ZZ-fusion, ϕ distributions
- ILC & ILD
- Method of the ψ_{CP} measurement
 - Preselection
 - MVA selection
 - Reconstructed CPV observable for signal and background
- Summary

Introduction

- Experimentally observed size of the CP violation (CPV) is insufficient to explain the baryon asymmetry of the Universe → search for new sources of the CPV beyond the SM is necessary
- Higgs boson is the only fundamental scalar discovered, related to quite a few unknowns (mass stabilization hierarchy problem, contribution to the energy density of the Universe, connection to the dark matter and gravity, etc.)
- It is conceivable that new sources of CPV may be introduced in an extended Higgs sector.
- ILC precision to measure the CPV mixing angle (ψ_{CP}) between the Higgs scalar and pseudoscalar states seems to be the most promising in the fermionic $H \rightarrow \tau \tau$ decay at 250 GeV (Table 1, JHEP 2020, 139 (2020)) see D. Jeans talk
- Other possibilities (i.e. HVV vertices) are worth exploiting as well as the other center-of-mass energies offered by the ILC staged physics programme
- Here we report on the status of the on-going CPV analysis in the eeH production at 1 TeV ILC

Table 1.				
Collider	ψ_{CP}			
HL-LHC	8°			
HE-LHC	—			
CEPC	_			
FCC-ee ₂₄₀	10°			
ILC ₂₅₀	4°			

ILC & ILD

- The International Linear Collider (ILC) is a high-luminosity linear e^-e^+ collider with center-of-massenergy range of 250 -500 GeV (extendable to 1 TeV) aimed for precision studies in the Higgs sector operating as a Higgs factory, detecting new physics phenomena in a direct or indirect way. It is designed to achieve a luminosity of $1.35 \cdot 10^{34}$ cm⁻²s⁻¹ and provide an integrated luminosity of 400 fb⁻¹ in the first four years of running (2 ab⁻¹ in a little over a decade).
- The electron beam will be polarized to 80 %, and the baseline plan includes an undulator-based positron source which will deliver 30 % positron polarization
- The well-defined collision energy at the ILC, highly polarized beams and low background levels, will enable these precision measurements

- Excellent track momentum resolution: $\delta(1/p) = 2 \times 10^{-5} \text{ GeV}^{-1}$
- Very powerful vertex detectors: δ (SV) < 4 μm
- Jet energy resolution: $\sigma_{\rm E, \, jet}$ < 3.5 % over 100 GeV
- Lepton (electron and muon) identification efficiency: above 99 %
- Good hermeticity down to $cos(\theta) \approx 0.984$

SM-like Higgs boson as a CPV mixture of CP even and odd states

• SM-like Higgs boson could be a mixture of scalar (*H*) and pseudo-scalar state (*A*):

 $h = H \cdot \cos \psi + A \cdot \sin \psi$

- Correlation between spin orientations of VV carries information on the Higgs CP state
- Numerous Higgs production processes at linear machines can be exploited (hZ, WW-fusion, ZZ-fusion) at various c.m. energies
- Both Higgs production and decays can be studied

Ways to probe HVV vertices (V=Z, W) in Higgs production and decays

• hVV vertex (CPV at a loop level):

 $\mathscr{L}_{_{VVH}} \sim M_Z^2$ ($1/v + a_V^{/}\Lambda$) $Z_\mu Z^\mu h + (b_V^{/}2\Lambda) Z_{\mu\nu} Z^{\mu\nu} h + (\tilde{b}_V^{/}2\Lambda) Z_{\mu\nu} \widetilde{Z}^{\mu\nu} h$

• hff vertex (CPV at a tree level):

 $\mathscr{L}_{\rm ffH} \sim g\, \overline{f}\, (\,\cos\psi_{\rm CP} + i\, \gamma^5\,\sin\psi_{\rm CP}\,)\,f\,h$

 Suppressed effect in VV-fusion w.r.t. (i.e.) Higgs to ττ decay, but relatively high statistics available (~27000 inclusively produced Higgs bosons in ZZ-fusion in 1 ab⁻¹ at 1 TeV ILC, however approximately half in the central tracker)

Ways to probe HVV vertices (V=Z, W) in Higgs production and decays

- Information on spin orientations of VV states is contained in the angle ϕ between production (decay) planes
- Angle between planes is the angle between unit vectors orthogonal to those planes:

$$\hat{n}_{1} = \frac{q_{e_{i}} - \times q_{e_{f}}}{|q_{e_{i}} - \times q_{e_{f}}|} \quad \text{and} \quad \hat{n}_{2} = \frac{q_{e_{i}} + \times q_{e_{f}}}{|q_{e_{i}} + \times q_{e_{f}}|}$$

(1)

- There is more than one way (convention) to define n₁ and n₂ from 3 vectors forming the planes (1st plane: initial electron, final electron, Z_{e-}; 2nd plane: initial positron, final positron, Z_{e+})
- Orientation of n₁ and n₂ could be in the same hemisphere (angle between n₁ and n₂ smaller than 180 deg.) or in the opposite (angle between n₁ and n₂ larger than 180 deg.)

Higgs production in ZZ-fusion

- Since vectors n₁ and n₂ have the same direction, the angle between planes can be retrieved through the arccos function as:
- $\phi = a \arccos(\underline{\oplus} \hat{n}_1 \cdot \hat{n}_2)$
- Sign <u>+</u> retain natural domain of arccos function (witch has a feature of returning angles from I and II quadrants also for angles larger than 180 deg.)
- *a* defines how the second (positron) plane is rotated w.r.t. the first (electron) plane; If it falls backwards (as illustrated) *a=-1*, otherwise *a=1*. Direction of Z in the e⁻ plane regulates the notion of direction (fwd. or back.) by the right hand rule

•
$$a = \frac{q_{Z_e^-} \cdot (\hat{n}_1 \times \hat{n}_2)}{|q_{Z_e^-} \cdot (\hat{n}_1 \times \hat{n}_2)|}$$

Higgs production in ZZ-fusion

Examples of ϕ distributions

- We are correctly reproducing ϕ distributions at the generator level both for hVV production and decay vertices (V = Z, W)
- All distributions are obtained for $\psi_{\rm CP}$ = 0

3

S. Bolognesi et al.,
On the spin and parity of a single produced resonance at the LHC,
arXiv:1208.4018 [hep-ph] for Higgs to ZZ* and WW* decays

J_m^+ (re	ed circles),	J_h^+ (green squar	es), J_h^- (blue diamonds)
scenario	X production	$X \to VV$ decay	comments
0_m^+	$gg \to X$	$g_1^{(0)} \neq 0$ in Eq.(9)	SM Higgs boson scalar
0_h^+	$gg \to X$	$g_2^{(0)} \neq 0$ in Eq.(9)	scalar with higher-dimension operators
0-	$gg \to X$	$g_4^{(0)} \neq 0$ in Eq.(9)	pseudo-scalar

Method of the ψ_{CP} measurement

- Consider $H \rightarrow bb$ and $H \rightarrow WW \rightarrow 4$ jets decays
 - 1. Cover most of the Higgs width (~ 80 %)
 - 2. Avoid high cross-section $e^+e^- \rightarrow e^+e^-\gamma$ background present in inclusive reconstruction
 - 3. Combine results
- Select ZZ-fusion (signal is mixed with HZ) using m (e⁺ e^{-})
- Isolate 2 leptons (e^+e^-)
- Reconstruct ϕ
- Suppress background with MVA
- Describe ϕ of the signal and background with PDFs
- Reconstruct ϕ of the signal from pseudo-data (S + B)
- Fit ψ_{CP} from the ϕ distribution
- Repeat pseudo experiments
- Combine channels

Dilepton mass distribution

Higgs production in ZZ-fusion

- WHIZARD v1.95, 500GeV/0.5 ab⁻¹, 1 TeV/ 1 ab⁻¹, 1.4 TeV/1 ab⁻¹, unpolarized
- t-channel process, electrons (spectators) are scattered forward not full statistics available in the tracker
- Due to this fact 1 TeV is the optimal energy for this study (already at i.e. 1. 4 TeV the number of events with both electron is the tracker is ~1/5 of the available statistics). At 500 GeV i.e. x-section for ZZ fusion is relatively small (7.2 fb) and number of events in the tracker is order of magnitude smaller than at 1 TeV
- Around $7 \cdot 10^3$ eeh events with both e+ and e- in the tracker in 1 ab⁻¹ at 1 TeV ILC with (-0.8, +0.3) polarized beams

Preselection

• ILC samples at 1 TeV, assuming $\mathcal{L} = 1 \text{ ab}^{-1}$, generated with LR polarization (-1, 1) are normalized to polarization (-0.8, +0.3):

$$W_{\text{pol}} = \left(\frac{1 - P_{e_{-}}}{2}\right) \cdot \left(\frac{1 + P_{e_{+}}}{2}\right) = \left(\frac{1 - (-0.8)}{2}\right) \cdot \left(\frac{1 + 0.3}{2}\right) = 0.585$$

- Preselection: find 2 isolated electrons (e^+e^-)
- Goal: find electrons spectators from ZZ-fusion and reduce high crosssection backgrounds
- Requirements:
 - Track energy: $E_{\text{track}} > 100 \text{ GeV} \text{spectators are energetic (3.3% loss)}$
 - Impact parameter: $d_0 < 0.1, z_0 < 1.0$
 - Ratio of deposition: $R_{cal} > 0.95$
 - Optimize cone vs. track energy

Signal and background preselection efficiencies

1 TeV/1 ab ⁻¹ /pol(-80%, +30%)	Sample	σ [fb]	Input	Output	Efficiency [%]
Signal:	$e^+e^- \rightarrow e^+e^-H(H \rightarrow b\overline{b})$	15.1	$N_{true} = 1121^*$ $N_{signal}^{norm} = 3600$	$N_{true} = 875^*$ $N_{ m sig/iso}^{ m norm} = 2800$	78 %
Background samples:	$e^-e^+ \rightarrow e^-e^+q\bar{q}^{**}$	2577.3	$N_{ev}^{norm} = 226160$	$\begin{array}{l} N_{true} = 1447 \\ N_{ev}^{norm} = 5470 \end{array}$	2.42 %
	$e^-e^+ \rightarrow e \nu q q^{***}$	8963.3	$N_{ev}^{norm} = 1730000$	$\begin{array}{l} N_{true} = 428 \\ N_{ev}^{norm} = 346 \end{array}$	0.02 %
	$e^-e^+ ightarrow q \overline{q} **$	9375.3	$N_{ev}^{norm} = 877528$	$N_{ev}^{norm} = 4$	0.0046 ‰
	$\gamma\gamma o q ar q q ar q$	126.0	$N_{ev}^{norm} =$ 73835	$N_{true} = 282$ $N_{ev}^{norm} = 930$	1.26 %
	$\gamma\gamma ightarrow e^- e^+ q \overline{q}$	3.1	N_{ev}^{norm} =1817	$N_{ev}^{norm} = 5$	0.25 %

* Small current sample size, ** q=b, ***q=b,c

B:S=2.5:1

Reconstructed CPV observable for signal and background

After preselection

MVA selection

- MVA is trained with 14 sensitive variables: p_{e^-} , p_{e^+} , E_{e^-} , E_{e^+} , $p_T(e^-e^-)$, $p_T(e^+e^+)$, $p_T(q_1)$, $p_T(q_2)$, E_{q_1} , E_{q_2} , m_H , E_H , $p_T(H)$, p_T^{miss}
- Three the most sensitive observables are: m_H , E_e and E_e +
- Best significance ~ 42 for BDT > 0.013 (training)
- BDT efficiency ~ 70%, B:S= 1:2.6
- Approximately ¹/₄ of the available signal statistics analyzed

After MVA

- MVA reverses backround to signal ratio to 1: 2.6
- Shapes maintained, yet large signal fluctuations
- Additional signal samples will be added

Summary

- Only few results of the CPV Higgs mixing angle measurements are available from the future projects. Primarily in the (more sensitive) Higgs fermionic decays and at lower center-of-mass energies
- 1 TeV ILC offers optimal statistics (cross-section pseudorapidity interplay) to probe CPV also in the HVV vertices
- Sensitive angle ϕ between Higgs production planes is reconstructed in ZZ-fusion with the expected behavior for $\psi_{CP}=0$. Polarized data samples are fully simulated with 1 ab⁻¹ (0.2 ab⁻¹) of integrated luminosity for background (signal). Result will be further improved since only ¹/₄ of available signal statistics is used
- Background φ distribution is CPV insensitive and it is effectively suppressed with the staged event selection
- Further improvements are on the way (additional MVA observables, combination of results from samples with different polarization schemes).

BACKUP

20th Lomonosov conference on Elementary Particle Physics, August 2021

Higgs decays: $H \rightarrow WW^*$ and $H \rightarrow ZZ^*$

• Unit vectors orthogonal to decay planes (one possible definition):

$$\hat{n}_1 = \frac{q_{f(V)} \times q_{\overline{f}(V)}}{\left|q_{f(V)} \times q_{\overline{f}(V)}\right|} \quad \text{and} \quad \hat{n}_2 = \frac{q_{f(V^*)} \times q_{\overline{f}(V^*)}}{\left|q_{f(V^*)} \times q_{\overline{f}(V^*)}\right|}$$

• n₁ and n₂ are now in `the opposite' directions, to preserve correct arcos output (in the range o-180 deg.) define ϕ as:

 $\phi = a \arccos(-\hat{n}_1 \cdot \hat{n}_2)$

• where a defines how the second (off-shell boson V^*) plane is rotated w.r.t. the first (on-shell boson) plane; If it falls backwards (as illustrated) a = -1, otherwise a = 1. Direction of the on-shell boson (V) regulates the notion of direction (fwd. or back.)

•
$$a = \frac{q_V \cdot (\hat{n}_1 \times \hat{n}_2)}{|q_V \cdot (\hat{n}_1 \times \hat{n}_2)|}$$

• It is essential to distinguish between fermion and antifermion (jet-charge)

• Examples of possible definitions of n₁ and n₂ in ZZ-fusion:

1.
$$\phi_1 = \arccos(+\hat{n}_1 \cdot \hat{n}_2)$$
 where $\hat{n}_1 = \frac{q_{e_i} - \times q_{e_f}}{|q_{e_i} - \times q_{e_f}|}$ and $\hat{n}_2 = \frac{q_{e_i} + \times q_{e_f}}{|q_{e_i} + \times q_{e_f}|}$

2.
$$\phi_2 = \arccos(-\hat{n}_1 \cdot \hat{n}_2)$$
 where $\hat{n}_1 = \frac{q_{Z_e} - \times q_{e_i}}{|q_{Z_e} - \times q_{e_i}|}$ and $\hat{n}_2 = \frac{q_{Z_e} - \times q_{e_i}}{|q_{Z_e} - \times q_{e_i}|}$

- 3. $\phi_3 = \arccos(+\hat{n}_1 \cdot \hat{n}_2)$ where $\hat{n}_1 = \frac{q_{Z_e} \times q_{e_i}}{|q_{Z_e} \times q_{e_i}|}$ and $\hat{n}_2 = \frac{q_{Z_e} + \times q_{e_f} + q_{e_f}}{|q_{Z_e} + \times q_{e_f} + q_{e_f}|}$
- No matter how we define a unit vector orthogonal to a production (decay) plane, consistently defined ϕ leads to the same results (in production and decay).

