CPV in e^+e^-H at 1 TeV ILC

NATAŠA VUKAŠINOVIĆ, T. AGATONVIĆ-JOVIN ET AL.
VINCA INSTITUTE OF NUCLEAR SCIENCES, UNIVERSITY OF BELGRADE,
FACULTY OF SCIENCE, UNIVERSITY OF KRAGUJEVAC

20th Lomonosov conference on Elementary Particle Physics
Outline

- Introduction
- SM-like Higgs boson as a CPV mixture of CP even and odd states
- Ways to probe HVV vertices ($V = Z, W$) in Higgs production and decays
- Higgs production in ZZ-fusion, ϕ distributions
- ILC & ILD
- Method of the ψ_{CP} measurement
 - Preselection
 - MVA selection
 - Reconstructed CPV observable for signal and background
- Summary
Introduction

- Experimentally observed size of the CP violation (CPV) is insufficient to explain the baryon asymmetry of the Universe → search for new sources of the CPV beyond the SM is necessary
- Higgs boson is the only fundamental scalar discovered, related to quite a few unknowns (mass stabilization – hierarchy problem, contribution to the energy density of the Universe, connection to the dark matter and gravity, etc.)
- It is conceivable that new sources of CPV may be introduced in an extended Higgs sector.

- ILC precision to measure the CPV mixing angle (\(\psi_{CP} \)) between the Higgs scalar and pseudoscalar states seems to be the most promising in the fermionic \(H \rightarrow \tau \tau \) decay at 250 GeV (Table 1, JHEP 2020, 139 (2020)) – see D. Jeans talk
- Other possibilities (i.e. HVV vertices) are worth exploiting as well as the other center-of-mass energies offered by the ILC staged physics programme
- Here we report on the status of the on-going CPV analysis in the eeH production at 1 TeV ILC

<table>
<thead>
<tr>
<th>Collider</th>
<th>(\psi_{CP})</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL-LHC</td>
<td>8°</td>
</tr>
<tr>
<td>HE-LHC</td>
<td>–</td>
</tr>
<tr>
<td>CEPC</td>
<td>–</td>
</tr>
<tr>
<td>FCC-ee(_{240})</td>
<td>10°</td>
</tr>
<tr>
<td>ILC(_{250})</td>
<td>4°</td>
</tr>
</tbody>
</table>
ILC & ILD

The International Linear Collider (ILC) is a high-luminosity linear e^+e^- collider with center-of-mass-energy range of 250 - 500 GeV (extendable to 1 TeV) aimed for precision studies in the Higgs sector operating as a Higgs factory, detecting new physics phenomena in a direct or indirect way. It is designed to achieve a luminosity of $1.35 \cdot 10^{34}$ cm$^{-2}$s$^{-1}$ and provide an integrated luminosity of 400 fb$^{-1}$ in the first four years of running (2 ab$^{-1}$ in a little over a decade).

- The electron beam will be polarized to 80%, and the baseline plan includes an undulator-based positron source which will deliver 30% positron polarization.
- The well-defined collision energy at the ILC, highly polarized beams and low background levels, will enable these precision measurements.

- Excellent track momentum resolution: $\delta(1/p) = 2 \times 10^{-5}$ GeV$^{-1}$
- Very powerful vertex detectors: $\delta(SV) < 4 \mu$m
- Jet energy resolution: $\sigma_{E_{\text{jet}}} < 3.5$ % over 100 GeV
- Lepton (electron and muon) identification efficiency: above 99 %
- Good hermeticity down to $\cos(\theta) \approx 0.984$
SM-like Higgs boson as a CPV mixture of CP even and odd states

• SM-like Higgs boson could be a mixture of scalar (H) and pseudo-scalar state (A):

$$h = H \cdot \cos \psi + A \cdot \sin \psi$$

• Correlation between spin orientations of VV carries information on the Higgs CP state

• Numerous Higgs production processes at linear machines can be exploited (hZ, WW-fusion, ZZ-fusion) at various c.m. energies

• Both Higgs production and decays can be studied
Ways to probe HVV vertices (V=Z, W) in Higgs production and decays

- hVV vertex (CPV at a loop level):
 \[\mathcal{L}_{VHV} \sim M_Z^2 \left(\frac{1}{\sqrt{s}} + \frac{a_V}{\Lambda} \right) Z_\mu Z^\mu h + \left(\frac{b_V}{2\Lambda} \right) Z_{\mu\nu} Z^{\mu\nu} h + \left(\frac{\tilde{b}_V}{2\Lambda} \right) Z_{\mu\nu} \tilde{Z}^{\mu\nu} h \]

- hff vertex (CPV at a tree level):
 \[\mathcal{L}_{fHF} \sim g f \left(\cos \psi_{CP} + i \gamma^5 \sin \psi_{CP} \right) h \]

- Suppressed effect in VV-fusion w.r.t. (i.e.) Higgs to \(\tau\tau \) decay, but relatively high statistics available (~27000 inclusively produced Higgs bosons in ZZ-fusion in 1 ab\(^{-1}\) at 1 TeV ILC, however approximately half in the central tracker)
Ways to probe HVV vertices (V=Z, W) in Higgs production and decays

- Information on spin orientations of VV states is contained in the angle ϕ between production (decay) planes.

- Angle between planes is the angle between unit vectors orthogonal to those planes:

 $$\hat{n}_1 = \frac{q_e^- \times q_{e^-}}{|q_e^- \times q_{e^-}|} \quad \text{and} \quad \hat{n}_2 = \frac{q_e^+ \times q_{e^+}}{|q_e^+ \times q_{e^+}|}$$

- There is more than one way (convention) to define n_1 and n_2 from 3 vectors forming the planes (1st plane: initial electron, final electron, Z_{e^-}; 2nd plane: initial positron, final positron, Z_{e^+}).

- Orientation of n_1 and n_2 could be in the same hemisphere (angle between n_1 and n_2 smaller than 180 deg.) or in the opposite (angle between n_1 and n_2 larger than 180 deg.).
• Since vectors n_1 and n_2 have the same direction, the angle between planes can be retrieved through the arccos function as:

$$\phi = a \arccos(\pm \mathbf{n}_1 \cdot \mathbf{n}_2)$$

• Sign \pm retain natural domain of arccos function (which has a feature of returning angles from I and II quadrants also for angles larger than 180 deg.)

• a defines how the second (positron) plane is rotated w.r.t. the first (electron) plane; if it falls backwards (as illustrated) $a=-1$, otherwise $a=1$. Direction of Z in the e^- plane regulates the notion of direction (fwd. or back.) by the right hand rule

$$a = \frac{q_{Z e^-} \cdot (\mathbf{n}_1 \times \mathbf{n}_2)}{|q_{Z e^-} \cdot (\mathbf{n}_1 \times \mathbf{n}_2)|}$$

Higgs production in ZZ-fusion
Examples of ϕ distributions

- We are correctly reproducing ϕ distributions at the generator level both for hVV production and decay vertices ($V = Z, W$).
- All distributions are obtained for $\psi_{CP} = 0$

S. Bolognesi et al.,
On the spin and parity of a single produced resonance at the LHC,
arXiv:1208.4018 [hep-ph] for Higgs to ZZ* and WW* decays

<table>
<thead>
<tr>
<th>J_{m}^{+} (red circles), J_{h}^{+} (green squares), J_{h}^{-} (blue diamonds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>scenario</td>
</tr>
<tr>
<td>0^{0}_{h}</td>
</tr>
<tr>
<td>0^{+}_{h}</td>
</tr>
<tr>
<td>0^{-}</td>
</tr>
</tbody>
</table>
Method of the ψ_{CP} measurement

- Consider $H \rightarrow bb$ and $H \rightarrow WW \rightarrow 4$ jets decays
 1. Cover most of the Higgs width ($\sim 80\%$)
 2. Avoid high cross-section $e^+e^- \rightarrow e^+e^-\gamma$ background present in inclusive reconstruction
 3. Combine results
- Select ZZ-fusion (signal is mixed with HZ) using $m(e^+e^-)$
- Isolate 2 leptons (e^+e^-)
- Reconstruct ϕ
- Suppress background with MVA
- Describe ϕ of the signal and background with PDFs
- Reconstruct ϕ of the signal from pseudo-data ($S + B$)
- Fit ψ_{CP} from the ϕ distribution
- Repeat pseudo experiments
- Combine channels
Higgs production in ZZ-fusion

- WHIZARD v1.95, 500GeV/0.5 ab⁻¹, 1 TeV/ 1 ab⁻¹, 1.4 TeV/1 ab⁻¹, unpolarized
- t-channel process, electrons (spectators) are scattered forward - not full statistics available in the tracker
- Due to this fact 1 TeV is the optimal energy for this study (already at i.e. 1.4 TeV the number of events with both electron is the tracker is ~1/5 of the available statistics). At 500 GeV i.e. x-section for ZZ fusion is relatively small (7.2 fb) and number of events in the tracker is order of magnitude smaller than at 1 TeV
- Around 7×10^3 eeh events with both e+ and e- in the tracker in 1 ab⁻¹ at 1 TeV ILC with (-0.8, +0.3) polarized beams
Preselection

• ILC samples at 1 TeV, assuming $\mathcal{L} = 1 \text{ ab}^{-1}$, generated with LR polarization (-1, 1) are normalized to polarization (-0.8, +0.3):

$$W_{\text{pol}} = \left(\frac{1 - P_{e+}}{2}\right) \cdot \left(\frac{1 + P_{e+}}{2}\right) = \left(\frac{1 - (-0.8)}{2}\right) \cdot \left(\frac{1 + 0.3}{2}\right) = 0.585$$

• Preselection: find 2 isolated electrons ($e^+ e^-$)

• Goal: find electrons spectators from ZZ-fusion and reduce high cross-section backgrounds

• Requirements:
 • Track energy: $E_{\text{track}} > 100 \text{ GeV}$ – spectators are energetic (3.3% loss)
 • Impact parameter: $d_0 < 0.1, z_0 < 1.0$
 • Ratio of deposition: $R_{\text{cal}} > 0.95$
 • Optimize cone vs. track energy
Isolation curve: $E_{\text{cone}}^2 < 40 E_{\text{track}} \text{ GeV} - 20 \text{ GeV}^2$
Signal and background preselection efficiencies

<table>
<thead>
<tr>
<th>1 TeV/1 ab(^{-1}) /pol(−80%, +30%)</th>
<th>Sample</th>
<th>(\sigma) [fb]</th>
<th>Input</th>
<th>Output</th>
<th>Efficiency [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal: (e^+e^- \rightarrow e^+e^- H(H \rightarrow b\bar{b}))</td>
<td>15.1</td>
<td>(N_{\text{true}} = 1121^*) (N_{\text{norm}} = 3600)</td>
<td>(N_{\text{true}} = 875^*) (N_{\text{norm}} = 2800)</td>
<td>78 %</td>
<td></td>
</tr>
<tr>
<td>Background samples: (e^-e^+ \rightarrow e^-e^+ q\bar{q}^{**})</td>
<td>2577.3</td>
<td>(N_{\text{ev norm}} = 226160)</td>
<td>(N_{\text{true}} = 1447) (N_{\text{ev norm}} = 5470)</td>
<td>2.42 %</td>
<td></td>
</tr>
<tr>
<td>(e^-e^+ \rightarrow evqq^{***})</td>
<td>8963.3</td>
<td>(N_{\text{ev norm}} = 1730000)</td>
<td>(N_{\text{true}} = 428) (N_{\text{ev norm}} = 346)</td>
<td>0.02 %</td>
<td></td>
</tr>
<tr>
<td>(e^-e^+ \rightarrow q\bar{q}^{**})</td>
<td>9375.3</td>
<td>(N_{\text{ev norm}} = 877528)</td>
<td>(N_{\text{ev norm}} = 4)</td>
<td>0.0046 %</td>
<td></td>
</tr>
<tr>
<td>(\gamma\gamma \rightarrow q\bar{q}q\bar{q})</td>
<td>126.0</td>
<td>(N_{\text{ev norm}} = 73835)</td>
<td>(N_{\text{true}} = 282) (N_{\text{ev norm}} = 930)</td>
<td>1.26 %</td>
<td></td>
</tr>
<tr>
<td>(\gamma\gamma \rightarrow e^-e^+ q\bar{q})</td>
<td>3.1</td>
<td>(N_{\text{ev norm}} = 1817)</td>
<td>(N_{\text{ev norm}} = 5)</td>
<td>0.25 %</td>
<td></td>
</tr>
</tbody>
</table>

* Small current sample size, ** q=b, *** q=b,c

B:S=2.5:1
Reconstructed CPV observable for signal and background

After preselection
MVA selection

• MVA is trained with 14 sensitive variables: $p_{e^-}, p_{e^+}, E_{e^-}, E_{e^+}, p_T(e^-e^-), p_T(e^+e^+), p_T(q_1), p_T(q_2), E_{q_1}, E_{q_2}, m_H, E_H, p_T(H), p_T^{\text{miss}}$
• Three the most sensitive observables are: m_H, E_{e^-} and E_{e^+}
• Best significance ~ 42 for $\text{BDT} > 0.013$ (training)
• BDT efficiency $\sim 70\%$, $B:S = 1:2.6$
• Approximately $\frac{1}{4}$ of the available signal statistics analyzed
After MVA

- MVA reverses background to signal ratio to 1:2.6
- Shapes maintained, yet large signal fluctuations
- Additional signal samples will be added
Summary

• Only few results of the CPV Higgs mixing angle measurements are available from the future projects. Primarily in the (more sensitive) Higgs fermionic decays and at lower center-of-mass energies.

• 1 TeV ILC offers optimal statistics (cross-section – pseudorapidity interplay) to probe CPV also in the HVV vertices.

• Sensitive angle \(\phi \) between Higgs production planes is reconstructed in ZZ-fusion with the expected behavior for \(\psi_{CP}=0 \). Polarized data samples are fully simulated with \(1 \text{ ab}^{-1} \) (0.2 \(\text{ab}^{-1} \)) of integrated luminosity for background (signal). Result will be further improved since only \(\frac{1}{4} \) of available signal statistics is used.

• Background \(\phi \) distribution is CPV insensitive and it is effectively suppressed with the staged event selection.

• Further improvements are on the way (additional MVA observables, combination of results from samples with different polarization schemes).
Higgs decays: $H \rightarrow WW^*$ and $H \rightarrow ZZ^*$

- Unit vectors orthogonal to decay planes (one possible definition):
 $$\hat{n}_1 = \frac{q_f(V) \times q_f(V)}{|q_f(V) \times q_f(V)|} \quad \text{and} \quad \hat{n}_2 = \frac{q_f(V^*) \times q_f(V^*)}{|q_f(V^*) \times q_f(V^*)|}$$

- n_1 and n_2 are now in ‘the opposite’ directions, to preserve correct arcos output (in the range 0-180 deg.) define ϕ as:
 $$\phi = a \arccos(-\hat{n}_1 \cdot \hat{n}_2)$$

 where a defines how the second (off-shell boson V^*) plane is rotated w.r.t. the first (on-shell boson) plane; If it falls backwards (as illustrated) $a = -1$, otherwise $a = 1$. Direction of the on-shell boson (V) regulates the notion of direction (fwd. or back.)

- $$a = \frac{q_V \cdot (\hat{n}_1 \times \hat{n}_2)}{|q_V \cdot (\hat{n}_1 \times \hat{n}_2)|}$$

- It is essential to distinguish between fermion and antifermion (jet-charge)
• Examples of possible definitions of n_1 and n_2 in ZZ-fusion:

1. $\phi_1 = \arccos(\hat{n}_1 \cdot \hat{n}_2)$ where $\hat{n}_1 = \frac{q e^- \times q e^-}{|q e^- \times q e^-|}$ and $\hat{n}_2 = \frac{q e^+ \times q e^+}{|q e^+ \times q e^+|}$

2. $\phi_2 = \arccos(-\hat{n}_1 \cdot \hat{n}_2)$ where $\hat{n}_1 = \frac{q Z e^- \times q e^-}{|q Z e^- \times q e^-|}$ and $\hat{n}_2 = \frac{q Z e^+ \times q e^+}{|q Z e^+ \times q e^+|}$

3. $\phi_3 = \arccos(\hat{n}_1 \cdot \hat{n}_2)$ where $\hat{n}_1 = \frac{q Z e^- \times q e^-}{|q Z e^- \times q e^-|}$ and $\hat{n}_2 = \frac{q Z e^+ \times q e^+}{|q Z e^+ \times q e^+|}$

• No matter how we define a unit vector orthogonal to a production (decay) plane, consistently defined ϕ leads to the same results (in production and decay).